295
Views
9
CrossRef citations to date
0
Altmetric
Original Articles: Clinical

The presence of monoclonal gammopathy in Ph-negative myeloproliferative neoplasms is associated with a detrimental effect on outcomes

ORCID Icon, , , , , , , , , , & show all
Pages 2582-2587 | Received 09 Jan 2017, Accepted 18 Mar 2017, Published online: 09 May 2017

References

  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405.
  • Tefferi A, Thiele J, Vannucchi AM, et al. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia. 2014;28:1407–1413.
  • Majhail NS, Lichtin AE. Rare coexistence of multiple myeloma with essential thrombocythemia: report of two cases. Haematologica. 2003;88:ECR09.
  • Eskazan AE, Ongoren S, Ar MC, et al. Essential thrombocythemia and multiple myeloma: two rare diseases in one patient. Clin Lymphoma Myeloma Leuk. 2011;11:442–445.
  • Anelli L, Zagaria A, Minervini A, et al. IgG-lymphoplasmacytic lymphoma following polycythemia vera: JAK2 V617F and MYD88 L265P mutations separated in the same house. Ann Hematol. 2014;93:1605–1607.
  • Nishihori T, Hassoun Y, Zhang L, et al. High-dose melphalan produces favorable response in a patient with multiple myeloma and coexisting essential thrombocythemia with JAK2 mutation. Bone Marrow Transplant. 2014;49:148–149.
  • Badelita S, Dobrea C, Colita A, et al. The simultaneous occurrence of multiple myeloma and JAK2 positive myeloproliferative neoplasms – report on two cases. J Med Life. 2015;8:55–61.
  • Mahé K, Luque Paz D, Couturier M-A, et al. Extinction of myeloproliferative neoplasm by acquisition of a lymphoid disease: JAK2 (V617F) and JAK2 exon 12 allele burden disappearance during the follow-up of two patients. Ann Hematol. 2016;95:529–531.
  • Randi ML, Tison T, Ruzzon E, et al. Association of monoclonal gammopathy and polycythemia vera or essential thrombocythemia: study of a large cohort of patients. Ann Hematol. 2003;82:214–217.
  • Malhotra J, Kremyanskaya M, Schorr E, et al. Coexistence of myeloproliferative neoplasm and plasma-cell dyscrasia. Clin Lymphoma Myeloma Leuk. 2014;14:31–36.
  • Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–e548.
  • Kyle RA, Kumar S. The significance of monoclonal gammopathy of undetermined significance. Haematologica. 2009;94:1641–1644.
  • Economopoulos T, Economidou J, Papageorgiou E, et al. Monoclonal gammopathy in chronic myeloproliferative disorders. Blut. 1989;58:7–9.
  • Roeker LE, Larson DR, Kyle RA, et al. Risk of acute leukemia and myelodysplastic syndromes in patients with monoclonal gammopathy of undetermined significance (MGUS): a population-based study of 17 315 patients. Leukemia. 2013;27:1391–1393.
  • Bida JP, Kyle RA, Therneau TM, et al. Disease associations with monoclonal gammopathy of undetermined significance: a population-based study of 17,398 patients. Mayo Clin Proc. 2009;84:685–693.
  • Saleun JP, Vicariot M, Deroff P, et al. Monoclonal gammopathies in the adult population of Finistère, France. J Clin Pathol. 1982;35:63–68.
  • Decaux O, Rodon P, Ruelland A, et al. Epidemiology of monoclonal gammopathy in a general hospital and a university internal medicine department. Rev Méd Interne. 2007;28:670–676.
  • Kyle RA, Rajkumar SV. Monoclonal gammopathy of undetermined significance and multiple myeloma. JAMA Oncol. 2015;1:174–175.
  • Cooper MR. A review of the clinical studies of alpha-interferon in the management of multiple myeloma. Semin Oncol. 1991;18:18–29.
  • Khoo TL, Vangsted AJ, Joshua D, et al. Interferon-alpha in the treatment of multiple myeloma. Curr Drug Targets. 2011;12:437–446.
  • Usui E, Nishii K, Katayama N, et al. Upregulated production of IL-6, but not IL-10, by interferon-alpha induces SOCS3 expression and attenuates STAT1 phosphorylation in myeloma cells. Hematol J. 2004;5:505–512.
  • Thyrell L, Arulampalam V, Hjortsberg L, et al. Interferon alpha induces cell death through interference with interleukin 6 signaling and inhibition of STAT3 activity. Exp Cell Res. 2007;313:4015–4024.
  • Delhommeau F, Dupont S, Tonetti C, et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood. 2007;109:71–77.
  • Hawley RG. Interleukin-6-type cytokines in myeloproliferative disease. Ann N Y Acad Sci. 1995;762:294–307.
  • Rosean TR, Tompkins VS, Tricot G, et al. Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res. 2014;59:188–202.
  • Quintás-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115:3109–3117.
  • Orlowski RZ, Gercheva L, Williams C, et al. A phase 2, randomized, double-blind, placebo-controlled study of siltuximab (anti-IL-6 mAb) and bortezomib versus bortezomib alone in patients with relapsed or refractory multiple myeloma. Am J Hematol. 2015;90:42–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.