206
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Immunophenotype and function define TCRγδ + T-ALL as a distinct subgroup from TCRαβ + T-ALL patients

, , &
Pages 108-117 | Received 30 Nov 2018, Accepted 23 Jul 2019, Published online: 08 Aug 2019

References

  • Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1:75–87.
  • Qin L, Deng HY, Chen SJ, et al. miR-139 acts as a tumor suppressor in T-cell acute lymphoblastic leukemia by targeting CX chemokine receptor 4. Am J Transl Res. 2017;9:4059–4070.
  • Bongiovanni D, Saccomani V, Piovan E. Aberrant signaling pathways in T-cell acute lymphoblastic leukemia [Review]. IJMS. 2017;18:1904.
  • Szarzynska-Zawadzka B, Kosmalska M, Sedek L, et al. Cost-effective screening of DNMT3A coding sequence identifies somatic mutation in pediatric T-cell acute lymphoblastic leukemia. Eur J Haematol. 2017;99:514–519.
  • Uckun FM, Sensel MG, Sun L, et al. Biology and treatment of childhood T-lineage acute lymphoblastic leukemia [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.Review]. Blood. 1998;91:735–746.
  • Kode J, Dudhal N, Banavali S, et al. Clonal T-cell receptor gamma and delta gene rearrangements in T-cell acute lymphoblastic leukemia at diagnosis: predictor of prognosis and response to chemotherapy. Leukemia Lymphoma. 2004;45:125–133.
  • Kode J, Dudhal N, Banavali S, et al. T-cell receptor gamma and delta junctional gene rearrangements as diagnostic and prognostic biomarker for T-cell acute lymphoblastic leukemia [Letter]. Leukemia lymphoma. 2006;47:769–770.
  • Schott G, Sperling C, Schrappe M, et al. Immunophenotypic and clinical features of T-cell receptor gammadelta + T-lineage acute lymphoblastic leukaemia. Br J Haematol. 1998;101:753–755.
  • Alfsen GC, Beiske K, Holte H, et al. T-cell receptor tau delta +/CD3 + 4-8-T- cell acute lymphoblastic leukemias: a distinct subgroup of leukemias in children. A report of five cases. Blood. 1991;77:2023–2030.
  • Nirmala K, Rajalekshmy KR, Raman SG, et al. PCR-heteroduplex analysis of TCR gamma, delta and TAL-1 deletions in T-acute lymphoblastic leukemias: implications in the detection of minimal residual disease. Leukemia Res. 2002;26:335–343.
  • Pongers-Willemse MJ, Seriu T, Stolz F, et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13:110–118.
  • Chan DW, Liang R, Kwong YL, et al. Detection of T-cell receptor delta gene rearrangement in T-cell malignancies by clonal specific polymerase chain reaction and its application to detect minimal residual disease. Am J Hematol. 1996;52:171–177.
  • Gameiro P, Mortuza FY, Hoffbrand AV, et al. Minimal residual disease monitoring in adult T-cell acute lymphoblastic leukemia: a molecular based approach using T-cell receptor G and D gene rearrangements. Haematologica. 2002;87:1126–1134.
  • Kode J, Advani S, Chiplunkar S. T-cell receptor gamma and delta gene rearrangements in T-cell acute lymphoblastic leukemia in Indian patients. Leukemia Lymphoma. 2000;36:331–338.
  • Mirji G, Bhat J, Kode J, et al. Risk stratification of T-cell acute lymphoblastic leukemia patients based on gene expression, mutations and copy number variation. Leukemia Re. 2016;45:33–39.
  • Hintz M, Reichenberg A, Altincicek B, et al. Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human gammadelta T cells in Escherichia coli. FEBS Lett. 2001;509:317–322.
  • Dhar S, Chiplunkar SV. Lysis of aminobisphosphonate-sensitized MCF-7 breast tumor cells by Vgamma9Vdelta2 T cells. Cancer Immun. 2010;10:10.
  • Gogoi D, Dar AA, Chiplunkar SV. Involvement of Notch in activation and effector functions of gammadelta T cells. J Immunol. 2014;192:2054–2062.
  • Quah BJ, Warren HS, Parish CR. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc. 2007;2:2049–2056.
  • Martin PJ. MEKing it easier to prevent GVHD. Blood. 2013;121:4611–4612.
  • Dieli F, Poccia F, Lipp M, et al. Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med. 2003;198:391–397.
  • Alexander AA, Maniar A, Cummings JS, et al. Isopentenyl pyrophosphate-activated CD56 + γδ T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin Cancer Res. 2008;14:4232–4240.
  • Angelini DF, Borsellino G, Poupot M, et al. FcgammaRIII discriminates between 2 subsets of Vγ9VΔ2 effector cells with different responses and activation pathways. Blood. 2004;104:1801–1807.
  • Matos DM, Rizzatti EG, Fernandes M, et al. γδ and αβ T-cell acute lymphoblastic leukemia: comparison of their clinical and immunophenotypic features. Haematologica. 2005;90:264–266.
  • Gogoi D, Chiplunkar SV. Targeting gamma delta T cells for cancer immunotherapy: bench to bedside. Indian J Med Res. 2013;138:755–761.
  • Castella B, Riganti C, Fiore F, et al. Immune modulation by zoledronic acid in human myeloma: an advantageous cross-talk between Vγ9Vδ2 T cells, αβ CD8+ T cells, regulatory T cells, and dendritic cells. J Immunol. 2011;187:1578–1590.
  • Mattarollo SR, Kenna T, Nieda M, et al. Chemotherapy and zoledronate sensitize solid tumour cells to Vγ9Vδ2 T cell cytotoxicity. Cancer Immunol Immun. 2007;56:1285–1297.
  • Griffiths GM, Tsun A, Stinchcombe JC. The immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol. 2010;189:399–406.
  • Dustin ML. The immunological synapse. Arthr Res. 2002;4: S119–S25.
  • Fackler OT, Alcover A, Schwartz O. Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat Rev Immunol. 2007;7:310–317.
  • Ramsay AG, Johnson AJ, Lee AM, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118:2427–2437.
  • Sims TN, Dustin ML. The immunological synapse: integrins take the stage. Immunol Rev. 2002;186:100–117.
  • Kondo N, Ueda Y, Kita T, et al. NDR1-dependent regulation of kindlin-3 controls high-affinity LFA-1 binding and immune synapse organization. Mol Cell Biol. 2017;37:5376635.
  • Gertner J, Wiedemann A, Poupot M, et al. Human γδ T lymphocytes strip and kill tumor cells simultaneously. Immunol Lett. 2007;110:42–53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.