453
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Methyltransferase DNMT3B in leukemia

, &
Pages 263-273 | Received 13 May 2019, Accepted 07 Sep 2019, Published online: 24 Sep 2019

References

  • Chaudry SF, Chevassut TJ. Epigenetic guardian: a review of the DNA methyltransferase DNMT3A in acute myeloid leukaemia and clonal haematopoiesis. Biomed Res Int. 2017;2017:5473197.
  • Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19(2):81–92.
  • Gruenbaum Y, Cedar H, Razin A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature. 1982;295(5850):620–622.
  • Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–257.
  • Lei H, Oh SP, Okano M, et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development. 1996;122(10):3195–3205.
  • Jeltsch A, Jurkowska RZ. Allosteric control of mammalian DNA methyltransferases - a new regulatory paradigm. Nucleic Acids Res. 2016;44(18):8556–8575.
  • Singh RK, Mallela RK, Hayes A, et al. Dnmt1, Dnmt3a and Dnmt3b cooperate in photoreceptor and outer plexiform layer development in the mammalian retina. Exp Eye Res. 2017;159:132–146.
  • Fatemi M, Hermann A, Gowher H, et al. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur J Biochem. 2002;269(20):4981–4984.
  • Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416(6880):552–556.
  • Kim GD, Ni J, Kelesoglu N, et al. Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J. 2002;21(15):4183–4195.
  • Hallek M, Shanafelt TD, Eichhorst B. Chronic lymphocytic leukaemia. Lancet. 2018;391(10129):1524–1537.
  • Koschmieder S, Vetrie D. Epigenetic dysregulation in chronic myeloid leukaemia: a myriad of mechanisms and therapeutic options. Semin Cancer Biol. 2018;51:180–197.
  • Mansouri L, Wierzbinska JA, Plass C, et al. Epigenetic deregulation in chronic lymphocytic leukemia: clinical and biological impact. Semin Cancer Biol. 2018;51:1–11.
  • Nordlund J, Syvanen AC. Epigenetics in pediatric acute lymphoblastic leukemia. Semin Cancer Biol. 2018;51:129–138.
  • Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet. 2018;392(10147):593–606.
  • Benetatos L, Vartholomatos G. On the potential role of DNMT1 in acute myeloid leukemia and myelodysplastic syndromes: not another mutated epigenetic driver. Ann Hematol. 2016;95(10):1571–1582.
  • Vicente-Duenas C, Gonzalez-Herrero I, Sehgal L, et al. Dnmt1 links BCR-ABLp210 to epigenetic tumor stem cell priming in myeloid leukemia. Leukemia. 2018;33:249–278.
  • Brunetti L, Gundry MC, Goodell MA. DNMT3A in leukemia. Cold Spring Harb Perspect Med. 2017;7(2):a030320.
  • Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat Rev Cancer. 2015;15(3):152–165.
  • Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–2433.
  • Challen GA. Dominating the negative: how DNMT3A mutations contribute to AML pathogenesis. Cell Stem Cell. 2017;20(1):7–8.
  • Spencer DH, Russler-Germain DA, Ketkar S, et al. CpG island hypermethylation mediated by DNMT3A is a consequence of AML progression. Cell. 2017;168(5):801–816.
  • Loghavi S, Zuo Z, Ravandi F, et al. Clinical features of de novo acute myeloid leukemia with concurrent DNMT3A, FLT3 and NPM1 mutations. J Hematol Oncol. 2014;7:74.
  • Bullinger L, Dohner K, Dohner H. Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol. 2017;35(9):934–946.
  • Ostronoff F, Othus M, Ho PA, et al. Mutations in the DNMT3A exon 23 independently predict poor outcome in older patients with acute myeloid leukemia: a SWOG report. Leukemia. 2013;27(1):238–241.
  • Gale RE, Lamb K, Allen C, et al. Simpson's Paradox and the impact of different DNMT3A mutations on outcome in younger adults with acute myeloid leukemia. J Clin Oncol. 2015;33(18):2072–2083.
  • Saygin C, Hirsch C, Przychodzen B, et al. Mutations in DNMT3A, U2AF1, and EZH2 identify intermediate-risk acute myeloid leukemia patients with poor outcome after CR1. Blood Cancer J. 2018;8(1):4.
  • Mills K. Persistence of DNMT3A does not influence clinical outcome in acute myeloid leukaemia. Br J Haematol. 2016;175(2):185–186.
  • Bhatnagar B, Eisfeld AK, Nicolet D, et al. Persistence of DNMT3A R882 mutations during remission does not adversely affect outcomes of patients with acute myeloid leukaemia. Br J Haematol. 2016;175(2):226–236.
  • Gaidzik VI, Weber D, Paschka P, et al. DNMT3A mutant transcript levels persist in remission and do not predict outcome in patients with acute myeloid leukemia. Leukemia. 2018;32(1):30–37.
  • Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19(3):219–220.
  • Robertson KD, Uzvolgyi E, Liang G, et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 1999;27(11):2291–2298.
  • Xie S, Wang Z, Okano M, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 1999;236(1):87–95.
  • Yin B, Chen Y, Zhu N, et al. Cloning of full-length Dnmt3b cDNA and its alternative splicing isoforms in mouse embryo. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 1999;21(6):431–438.
  • Tajima S, Suetake I, Takeshita K, et al. Domain structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA methyltransferases. Adv Exp Med Biol. 2016;945:63–86.
  • Qiu C, Sawada K, Zhang X, et al. The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol. 2002;9(3):217–224.
  • Wang L, Wang J, Sun S, et al. A novel DNMT3B subfamily, DeltaDNMT3B, is the predominant form of DNMT3B in non-small cell lung cance r. Int J Oncol. 2006;29(1):201–207.
  • Wang J, Bhutani M, Pathak AK, et al. Delta DNMT3B variants regulate DNA methylation in a promoter-specific manner. Cancer Res. 2007;67(22):10647–10652.
  • Ostler KR, Davis EM, Payne SL, et al. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene. 2007;26(38):5553–5563.
  • Horii T, Suetake I, Yanagisawa E, et al. The Dnmt3b splice variant is specifically expressed in in vitro-manipulated blastocysts and their derivative ES cells. J Reprod Dev. 2011;57(5):579–585.
  • Gopalakrishnan S, Van Emburgh BO, Shan J, et al. A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding. Mol Cancer Res. 2009;7(10):1622–1634.
  • Singh P, Sailu S, Palchamy E, et al. Identification of a novel leukemic-specific splice variant of DNMT3B and its stability. Med Oncol. 2017;34(8):145.
  • Gordon CA, Hartono SR, Cá¦Din F. Inactive DNMT3B splice variants modulate de novo DNA methylation. PLoS ONE. 2013;8(7):e69486.
  • Shah MY, Vasanthakumar A, Barnes NY, et al. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis. Cancer Res. 2010;70(14):5840–5850.
  • Ostler KR, Yang Q, Looney TJ, et al. Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma. Cancer Res. 2012;72(18):4714–4723.
  • Plourde KV, Labrie Y, Ouellette G, et al. Genome-wide methylation analysis of DNMT3B gene isoforms revealed specific methylation profiles in br east cell lines. Epigenomics. 2016;8(9):1209–1226.
  • Duymich CE, Charlet J, Yang X, et al. DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in s omatic cells. Nat Commun. 2016;7(1):11453.
  • Mizuno S, Chijiwa T, Okamura T, et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001;97(5):1172–1179.
  • Li Y, Wu SL, Bu DF, et al. The expression of DNA methyltransferase DNMT1, 3A and 3B in acute leukemia and myelodysplastic syndrome. Zhonghua Nei Ke Za Zhi. 2003;42(10):688–691.
  • Mishra A, Liu S, Sams GH, et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer Cell. 2012;22(5):645–655.
  • Huang J, Yang M, Jin J. Effects of uroacitides on the methylation of PTEN gene in myelodysplastic syndrome cells and its mechanism. Zhonghua Xue Ye Xue Za Zhi. 2013;34:600–605.
  • Zhang YY, Huang SH, Zhou HR, et al. Role of HOTAIR in the diagnosis and prognosis of acute leukemia. Oncol Rep. 2016;36(6):3113–3122.
  • Zhu LF, Chen QR, Chen SZ, et al. The construction and identification of induced pluripotent stem cells derived from acute myelogenous leukemia cells. Cell Physiol Biochem. 2017;41(4):1661–1674.
  • Shen N, Jiang L, Li Q, et al. The epigenetic effect of microRNA in BCR-ABL1positive microvesicles during the transformation of normal hematopoietic transplants. Oncol Rep. 2017;38(5):3278–3284.
  • Zheng Y, Zhang H, Wang Y, et al. Loss of Dnmt3b accelerates MLL-AF9 leukemia progression. Leukemia. 2016;30(12):2373–2384.
  • Li YH, Liu XD, Guo XF, et al. Expression and clinical significance of DNMT in patients with chronic myeloid leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015;23:1547–1550.
  • Kn H, Bassal S, Tikellis C, et al. Expression analysis of the epigenetic methyltransferases and methyl-CpG binding protein families in the normal B-cell and B-cell chronic lymphocytic leukemia (CLL). Cancer Biol Ther. 2004;3:989–994.
  • Guo TT, Yang MZ. Expression of DNA methyltransferase genes and its significance in AML patients. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015;23(4):940–945.
  • Oliveira LH, Schiavinato JL, Fraguas MS, et al. Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia. Cancer Sci. 2015;106(10):1264–1277.
  • Niederwieser C, Kohlschmidt J, Volinia S, et al. Prognostic and biologic significance of DNMT3B expression in older patients with cytogenetically normal primary acute myeloid leukemia. Leukemia. 2015;29(3):567–575.
  • Schwind S, Marcucci G, Maharry K, et al. BAALC and ERG expression levels are associated with outcome and distinct gene and microRNA expression profiles in older patients with de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood. 2010;116(25):5660–5669.
  • Kuhnl A, Valk PJ, Sanders MA, et al. Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia. Blood. 2015;125(19):2985–2994.
  • Itonaga H, Imanishi D, Wong YF, et al. Expression of myeloperoxidase in acute myeloid leukemia blasts mirrors the distinct DNA methylation pattern involving the downregulation of DNA methyltransferase DNMT3B. Leukemia. 2014;28(7):1459–1466.
  • Larmonie NSD, Arentsen-Peters T, Obulkasim A, et al. MN1 overexpression is driven by loss of DNMT3B methylation activity in inv(16) pediatric AML. Oncogene. 2018;37(1):107–115.
  • Vispe S, Deroide A, Davoine E, et al. Consequences of combining siRNA-mediated DNA methyltransferase 1 depletion with 5-aza-2'-deoxycytidine in human leukemic KG1 cells. Oncotarget. 2015;6:15265–15282.
  • Chen B, Wang J, Gu X, et al. The DNMT3B -579G > T polymorphism is significantly associated with the risk of gastric cancer but not lung cancer in Chinese population. Technol Cancer Res Treat. 2017;16(6):1259–1265.
  • Feng X, Wang J, Gu X, et al. Association of DNMT3B -283T > C polymorphism with risk of lung and gastric cancer: a case-control study and a meta-analysis. Int J Biol Markers. 2018;33(2):195–200.
  • Li Y, Dai Y, Wu SL, et al. [The C46359T polymorphism of DNMT3B promoter gene and pathogenesis of acute leukemia]. Zhonghua Nei Ke Za Zhi. 2005;44(8):588–591.
  • Zheng Q, Zeng TT, Chen J, et al. Association between DNA methyltransferases 3B gene polymorphisms and the susceptibility to acute myeloid leukemia in Chinese Han population. PLoS One. 2013;8(9):e74626.
  • Goncalves AC, Alves R, Baldeiras I, et al. Genetic variants involved in oxidative stress, base excision repair, DNA methylation, and folate metabolism pathways influence myeloid neoplasias susceptibility and prognosis. Mol Carcinog. 2017;56(1):130–148.
  • Hayette S, Thomas X, Jallades L, et al. High DNA methyltransferase DNMT3B levels: a poor prognostic marker in acute myeloid leukemia. PLoS One. 2012;7(12):e51527.
  • Yeh CH, Bai XT, Moles R, et al. Mutation of epigenetic regulators TET2 and MLL3 in patients with HTLV-I-induced acute adult T-cell leukemia. Mol Cancer. 2016;15(1):15.
  • Herold T, Metzeler KH, Vosberg S, et al. Acute myeloid leukemia with del(9q) is characterized by frequent mutations of NPM1, DNMT3A, WT1 and low expression of TLE4. Genes Chromosomes Cancer. 2017;56(1):75–86.
  • Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 2009;113(25):6411–6418.
  • Mims A, Walker AR, Huang X, et al. Increased anti-leukemic activity of decitabine via AR-42-induced upregulation of miR-29b: a novel epigenetic-targeting approach in acute myeloid leukemia. Leukemia. 2013;27(4):871–878.
  • Bi L, Zhou B, Li H, et al. A novel miR-375-HOXB3-CDCA3/DNMT3B regulatory circuitry contributes to leukemogenesis in acute myeloid leukemia. BMC Cancer. 2018;18(1):182.
  • Li ZY, Yang L, Liu XJ, et al. The long noncoding RNA MEG3 and its target miR-147 regulate JAK/STAT pathway in advanced chronic myeloid leukemia. Ebiomedicine. 2018;34:61–75.
  • Palamarchuk A, Yan PS, Zanesi N, et al. Tcl1 protein functions as an inhibitor of de novo DNA methylation in B-cell chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci USA. 2012;109(7):2555–2560.
  • Masetti R, Bertuccio SN, Astolfi A, et al. Hh/Gli antagonist in acute myeloid leukemia with CBFA2T3-GLIS2 fusion gene. J Hematol Oncol. 2017;10(1):26
  • Jiang S, Ma X, Huang Y, et al. Reactivating aberrantly hypermethylated p15 gene in leukemic T cells by a phenylhexyl isothiocyanate mediated inter-active mechanism on DNA and chromatin. J Hematol Oncol. 2010;3(1):48.
  • Schemionek M, Kharabi Masouleh B, Klaile Y, et al. Identification of the adapter molecule MTSS1 as a potential oncogene-specific tumor suppressor in acute myeloid leukemia. PLoS One. 2015;10(5):e0125783.
  • Cheng J, Li Y, Liu S, et al. CXCL8 derived from mesenchymal stromal cells supports survival and proliferation of acute myeloid leukemia cells through the PI3K/AKT pathway. FASEB J. 2019;33(4):4755–4764.
  • Liu Q, Ma H, Sun X, et al. The regulatory ZFAS1/miR-150/ST6GAL1 crosstalk modulates sialylation of EGFR via PI3K/Akt pathway in T-cell acute lymphoblastic leukemia. J Exp Clin Cancer Res. 2019;38(1):199.
  • Gianfelici V, Messina M, Paoloni F, et al. IL7R overexpression in adult acute lymphoblastic leukemia is associated to JAK/STAT pathway mutations and identifies patients who could benefit from targeted therapies. Leuk Lymphoma. 2019;60(3):829–832.
  • Lipka DB, Witte T, Toth R, et al. RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat Commun. 2017;8(1):2126.
  • McMahon CM, Ferng T, Canaani J, et al. Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia. Cancer Discov. 2019;9(8):1050.
  • Schulze I, Rohde C, Scheller-Wendorff M, et al. Increased DNA methylation of Dnmt3b targets impairs leukemogenesis. Blood. 2016;127(12):1575–1586.
  • Cole CB, Verdoni AM, Ketkar S, et al. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2015;126(1):85–98.
  • Hagemann S, Heil O, Lyko F, et al. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS One. 2011;6(3):e17388.
  • Shen JZ, Xu CB, Fu HY, et al. Methylation of secreted frizzled related protein gene in acute leukemia patients in China. Asian Pac J Cancer Prev. 2011;12(10):2617–2621.
  • Geng S, Yao H, Weng J, et al. Effects of the combination of decitabine and homoharringtonine in SKM-1 and Kg-1a cells. Leuk Res. 2016;44:17–24.
  • Andrade AF, Borges KS, Castro-Gamero AM, et al. Zebularine induces chemosensitization to methotrexate and efficiently decreases AhR gene methylation in childhood acute lymphoblastic leukemia cells. Anticancer Drugs. 2014;25(1):72–81.
  • Jiang SH, Ma XD, Huang YQ, et al. Phenylhexyl isothiocyanate induces gene p15 demethylation by down-regulating DNA methyltransferases in Molt-4 cells. Yao Xue Xue Bao. 2009;44(4):350–354.
  • Fan LP, Shen JZ, Fu HY, et al. Effect of epigallocatechin-3-galate on human acute monocytic leukemia cell line U937 and its relevant mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2010;18:286–290.
  • Wang LP, Zhao YN, Sun X, et al. Effects of bufalin on up-regulating methylation of Wilm's tumor 1 gene in human erythroid leukemic cells. Chin J Integr Med. 2017;23(4):288–294.
  • Khaleghian A, Ghaffari SH, Ahmadian S, et al. Metabolism of arsenic trioxide in acute promyelocytic leukemia cells. J Cell Biochem. 2014;115(10):1729–1739.
  • Tholouli E, MacDermott S, Hoyland J, et al. Quantitative multiplex quantum dot in-situ hybridisation based gene expression profiling in tissue microarrays identifies prognostic genes in acute myeloid leukaemia. Biochem Biophys Res Commun. 2012;425(2):333–339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.