440
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Wilms’ tumor 1 gene in hematopoietic malignancies: clinical implications and future directions

, , , &
Pages 2059-2067 | Received 04 Feb 2020, Accepted 26 Apr 2020, Published online: 13 May 2020

References

  • Immanuel A, Hunt J, McCarthy H, et al. Quality of life in survivors of adult haematological malignancy. Eur J Cancer Care. 2019;28(4):e13067.
  • Chihara D, Ito H, Matsuda T, et al. Differences in incidence and trends of haematological malignancies in Japan and the United States. Br J Haematol. 2014;164(4):536–545.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: Cancer J Clin. 2016;66(1):7–30.
  • Sergentanis TN, Ntanasis-Stathopoulos I, Tzanninis IG, et al. Meat, fish, dairy products and risk of hematological malignancies in adults – a systematic review and meta-analysis of prospective studies. Leuk Lymphoma. 2019;60(8):1978–1990.
  • Hosen N, Sonoda Y, Oji Y, et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms’ tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol. 2002;116(2):409–420.
  • Adnan-Awad S, Meligui YME, Salem SE, et al. Prognostic Impact of WT-1 and Survivin Gene Expression in Acute Myeloid Leukemia Patients. Clin Lab. 2019;65(4):1–10.
  • Mashima K, Ikeda T, Toda Y, et al. Associations between the peripheral blood Wilms tumor gene 1 level and both bone marrow blast cells and the prognosis in patients with myelodysplastic syndrome. Leukemia Lymphoma. 2019;60(3):703–710.
  • Montano G, Vidovic K, Palladino C, et al. WT1-mediated repression of the proapoptotic transcription factor ZNF224 is triggered by the BCR-ABL oncogene. Oncotarget. 2015;6(29):28223–28237.
  • Hastie ND. Wilms’ tumour 1 (WT1) in development, homeostasis and disease. Development (Cambridge, England). 2017;144(16):2862–2872.
  • Huff V. Wilms’ tumours: about tumour suppressor genes, an oncogene and a chameleon gene. Nat Rev Cancer. 2011;11(2):111–121.
  • Essafi A, Webb A, Berry RL, et al. A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev Cell. 2011;21(3):559–574.
  • Artibani M, Sims AH, Slight J, et al. WT1 expression in breast cancer disrupts the epithelial/mesenchymal balance of tumour cells and correlates with the metabolic response to docetaxel. Sci Rep. 2017;7(1):45255.
  • Charlton J, Pritchard-Jones K. WT1 Mutation in Childhood Cancer. Methods Mol Biol. 2016;1467:1–14.
  • Koesters R, Linnebacher M, Coy JF, et al. WT1 is a tumor-associated antigen in colon cancer that can be recognized by in vitro stimulated cytotoxic T cells. Int J Cancer. 2004;109(3):385–392.
  • Ariyaratana S, Loeb DM. The role of the Wilms tumour gene (WT1) in normal and malignant haematopoiesis. Expert Rev Mol Med. 2007;9(14):1–17.
  • Mrózek K, Marcucci G, Paschka P, et al. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood. 2007;109(2):431–448.
  • Oji Y, Nakamori S, Fujikawa M, et al. Overexpression of the Wilms’ tumor gene WT1 in pancreatic ductal adenocarcinoma. Cancer Sci. 2004;95(7):583–587.
  • Caricasole A, Duarte A, Larsson SH, et al. RNA binding by the Wilms tumor suppressor zinc finger proteins. P Natl Acad Sci USA. 1996;93(15):7562–7566.
  • Krauth MT, Alpermann T, Bacher U, et al. WT1 mutations are secondary events in AML, show varying frequencies and impact on prognosis between genetic subgroups. Leukemia. 2015;29(3):660–667.
  • Pritchard-Jones K, Renshaw J, King-Underwood L. The Wilms tumour (WT1) gene is mutated in a secondary leukaemia in a WAGR patient. Hum Mol Genet. 1994;3(9):1633–1637.
  • Abbas S, Erpelinck-Verschueren CA, Goudswaard CS, et al. Mutant Wilms’ tumor 1 (WT1) mRNA with premature termination codons in acute myeloid leukemia (AML) is sensitive to nonsense-mediated RNA decay (NMD). Leukemia. 2010;24(3):660–663.
  • Aref S, El Sharawy S, Sabry M, et al. Prognostic relevance of Wilms tumor 1 (WT1) gene Exon 7 mutations in-patient with cytogenetically normal acute myeloid leukemia. Indian J Hematol Blood Transfus. 2014;30(4):226–230.
  • Rampal R, Alkalin A, Madzo J, et al. DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Reports. 2014;9(5):1841–1855.
  • Virappane P, Gale R, Hills R, et al. Mutation of the Wilms’ tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia: the United Kingdom Medical Research Council Adult Leukaemia Working Party. J Clin Oncol. 2008;26(33):5429–5435.
  • Gaidzik VI, Schlenk RF, Moschny S, et al. Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: a study of the German-Austrian AML Study Group. Blood. 2009;113(19):4505–4511.
  • Paschka P, Marcucci G, Ruppert AS, et al. Wilms’ tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol. 2008;26(28):4595–4602.
  • Renneville A, Boissel N, Zurawski V, et al. Wilms tumor 1 gene mutations are associated with a higher risk of recurrence in young adults with acute myeloid leukemia: a study from the Acute Leukemia French Association. Cancer. 2009;115(16):3719–3727.
  • Megias-Vericat JE, Herrero MJ, Rojas L, et al. A systematic review and meta-analysis of the impact of WT1 polymorphism rs16754 in the effectiveness of standard chemotherapy in patients with acute myeloid leukemia. Pharmacogenomics J. 2016;16(1):30–40.
  • Niavarani A, Horswell S, Sadri R, et al. The Wilms Tumor-1 (WT1) rs2234593 variant is a prognostic factor in normal karyotype acute myeloid leukemia. Ann Hematol. 2016;95(2):179–190.
  • Ostergaard M, Olesen LH, Hasle H, et al. WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients – results from a single-centre study. Br J Haematol. 2004;125(5):590–600.
  • Brieger J, Weidmann E, Fenchel K, et al. The expression of the Wilms’ tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells. Leukemia. 1994;8(12):2138–2143.
  • Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–5201.
  • Galimberti S, Ghio F, Guerrini F, et al. WT1 expression levels at diagnosis could predict long-term time-to-progression in adult patients affected by acute myeloid leukaemia and myelodysplastic syndromes. Br J Haematol. 2010;149(3):451–454.
  • Zhao XS, Jin S, Zhu HH, et al. Wilms’ tumor gene 1 expression: an independent acute leukemia prognostic indicator following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2012;47(4):499–507.
  • Nomdedeu JF, Hoyos M, Carricondo M, et al. Bone marrow WT1 levels at diagnosis, post-induction and post-intensification in adult de novo AML. Leukemia. 2013;27(11):2157–2164.
  • Rautenberg C, Pechtel S, Hildebrandt B, et al. Wilms’ Tumor 1 Gene Expression Using a Standardized European LeukemiaNet-Certified Assay Compared to Other Methods for Detection of Minimal Residual Disease in Myelodysplastic Syndrome and Acute Myelogenous Leukemia after Allogeneic Blood Stem Cell Transplantation. Biol Blood Marrow Transplant. 2018;24(11):2337–2343.
  • Hidaka D, Onozawa M, Hashiguchi J, et al. Wilms tumor 1 expression at diagnosis correlates with genetic abnormalities and polymorphism but is not independently prognostic in acute myelogenous leukemia: a hokkaido leukemia net study. Clin Lymphoma Myeloma Leuk. 2018;18(11):e469–e479.
  • Mashima K, Oh I, Ikeda T, et al. Role of sequential monitoring of WT1 gene expression in patients with acute myeloid leukemia for the early detection of leukemia relapse. Clin Lymphoma Myeloma Leuk. 2018;18(12):e521–e527.
  • Cho BS, Min GJ, Park SS, et al. WT1 measurable residual disease assay in patients with acute myeloid leukemia who underwent allogeneic hematopoietic stem cell transplantation: optimal time points, thresholds, and candidates. Biol Blood Marrow Transplant. 2019;25(10):1925–1932.
  • El Bordiny M, Al-Ghandour A, Abo Elwafa RA, et al. The clinical significance of the alternative Wilms tumor gene overexpression-hypermethylation signature in acute myeloid leukemia. Clin Transl Oncol. 2019;21(7):864–873.
  • Liu H, Wang X, Zhang H, et al. Dynamic changes in the level of WT1 as an MRD marker to predict the therapeutic outcome of patients with AML with and without allogeneic stem cell transplantation. Mol Med Report. 2019;20(3):2426–2432.
  • Rossi G, Minervini MM, Carella AM, et al. Wilms’ Tumor Gene (WT1) expression and minimal residual disease in acute myeloid leukemia. In: van den Heuvel-Eibrink MM, editor. Wilms Tumor. Brisbane (AU): Codon Publications Copyright: The Authors.; 2016.
  • Tamaki H, Ogawa H, Ohyashiki K, et al. The Wilms’ tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia. 1999;13(3):393–399.
  • Baba M, Hata T, Tsushima H, et al. The level of bone marrow WT1 message is a useful marker to differentiate myelodysplastic syndromes with low blast percentage from cytopenia due to other reasons. Intern Med. 2015;54(5):445–451.
  • Kobayashi S, Ueda Y, Nannya Y, et al. Prognostic significance of Wilms tumor 1 mRNA expression levels in peripheral blood and bone marrow in patients with myelodysplastic syndromes. Cancer Biomark. 2016;17(1):21–32.
  • Tamura H, Dan K, Yokose N, et al. Prognostic significance of WT1 mRNA and anti-WT1 antibody levels in peripheral blood in patients with myelodysplastic syndromes. Leuk Res. 2010;34(8):986–990.
  • Nagasaki J, Aoyama Y, Hino M, et al. Wilms Tumor 1 (WT1) mRNA expression level at diagnosis is a significant prognostic marker in elderly patients with myelodysplastic syndrome. Acta Haematol. 2017;137(1):32–39.
  • Lange T, Hubmann M, Burkhardt R, et al. Monitoring of WT1 expression in PB and CD34(+) donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning. Leukemia. 2011;25(3):498–505.
  • Yoon JH, Jeon YW, Yahng SA, et al. Wilms tumor gene 1 expression as a predictive marker for relapse and survival after hematopoietic stem cell transplantation for myelodysplastic syndromes. Biol Blood Marrow Transplant. 2015;21(3):460–467.
  • Casalegno-Garduno R, Schmitt A, Spitschak A, et al. Immune responses to WT1 in patients with AML or MDS after chemotherapy and allogeneic stem cell transplantation. Int J Cancer. 2016;138(7):1792–1801.
  • Carapeti M, Goldman JM, Cross NC. Dominant-negative mutations of the Wilms’ tumour predisposing gene (WT1) are infrequent in CML blast crisis and de novo acute leukaemia. Euro J Haematol. 2009;58(5):346–349.
  • Fukahori S. Quantification of WT1 mRNA by competitive NASBA in AML patients. Kurume Med J. 2001;48(2):129–134.
  • Menssen HD, Renkl HJ, Rodeck U, et al. Presence of Wilms' tumor gene (wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia. 1995;9(6):1060–1067.
  • Baudard M, Beauchamp-Nicoud A, Delmer A, et al. Has the prognosis of adult patients with acute myeloid leukemia improved over years? A single institution experience of 784 consecutive patients over a 16-year period. Leukemia. 1999;13(10):1481–1490.
  • Cilloni D, Messa F, Gottardi E, et al. Sensitivity to imatinib therapy may be predicted by testing Wilms tumor gene expression and colony growth after a short in vitro incubation. Cancer. 2004;101(5):979–988.
  • Chen ZX, Kaeda J, Saunders S, et al. Expression patterns of WT-1 and Bcr-Abl measured by TaqMan quantitative real-time RT-PCR during follow-up of leukemia patients with the Ph chromosome. Chin Med J. 2004;117(7):968–971.
  • Na IK, Kreuzer KA, Lupberger J, et al. Quantitative RT-PCR of Wilms tumor gene transcripts (WT1) for the molecular monitoring of patients with accelerated phase bcr/abl + CML. Leuke Res. 2005;29(3):343–345.
  • Schnittger S, Bacher U, Kern W, et al. RQ-PCR based WT1 expression in comparison to BCR-ABL quantification can predict Philadelphia negative clonal evolution in patients with imatinib-treated chronic myeloid leukaemia. Br J Haematol. 2009;146(6):665–668.
  • Tosello V, Mansour MR, Barnes K, et al. WT1 mutations in T-ALL. Blood. 2009;114(5):1038–1045.
  • Heesch S, Goekbuget N, Stroux A, et al. Prognostic implications of mutations and expression of the Wilms tumor 1 (WT1) gene in adult acute T-lymphoblastic leukemia. Haematologica. 2010;95(6):942–949.
  • Sadek HA, El-Metnawey WH, Shaheen IA, et al. Quantitative assessment of Wilms tumor 1 (WT1) gene transcripts in Egyptian acute lymphoblastic leukemia patients. J Investig Med. 2011;59(8):1258–1262.
  • Boublikova L, Kalinova M, Ryan J, et al. Wilms’ tumor gene 1 (WT1) expression in childhood acute lymphoblastic leukemia: a wide range of WT1 expression levels, its impact on prognosis and minimal residual disease monitoring. Leukemia. 2006;20(2):254–263.
  • Qin YZ, Jiang Q, Xu LP, et al. The prognostic significance of Wilms’ tumor gene 1 (WT1) expression at diagnosis in adults with Ph-negative B cell precursor acute lymphoblastic leukemia. Ann Hematol. 2019;98(11):2551–2559.
  • Busse A, Gokbuget N, Siehl JM, et al. Wilms’ tumor gene 1 (WT1) expression in subtypes of acute lymphoblastic leukemia (ALL) of adults and impact on clinical outcome. Ann Hematol. 2009;88(12):1199–1205.
  • Guglielmelli P, Zini R, Bogani C, et al. Molecular profiling of CD34+ cells in idiopathic myelofibrosis identifies a set of disease-associated genes and reveals the clinical significance of Wilms’ tumor gene 1 (WT1). Stem Cells. 2007;25(1):165–173.
  • Gallo D, Nicoli P, Calabrese C, et al. The Wilms’ tumor (WT1) gene expression correlates with the International Prognostic Scoring System (IPSS) score in patients with myelofibrosis and it is a marker of response to therapy. Cancer Med. 2016;5(7):1650–1653.
  • Cottin L, Riou J, Boyer F, et al. WT1 gene is overexpressed in myeloproliferative neoplasms, especially in myelofibrosis. Blood Cells, Mol Dis. 2019;75:35–40.
  • Hatta Y, Takeuchi J, Saitoh T, et al. WT1 expression level and clinical factors in multiple myeloma. J. Exp. Clin. Cancer Res. 2005;24(4):595–599.
  • Saatci C, Caglayan AO, Kocyigit I, et al. Expression of WT1 gene in multiple myeloma patients at diagnosis: is WT1 gene expression a useful marker in multiple myeloma? Hematol. 2010;15(1):39–42.
  • Ujj Z, Buglyo G, Udvardy M, et al. WT1 overexpression affecting clinical outcome in non-hodgkin lymphomas and adult acute lymphoblastic leukemia. Pathol Oncol Res. 2014;20(3):565–570.
  • Nakata J, Nakajima H, Hayashibara H, et al. Extremely strong infiltration of WT1-specific CTLs into mouse tumor by the combination vaccine with WT1-specific CTL and helper peptides. Oncotarget. 2018;9(89):36029–36038.
  • Oka Y, Tsuboi A, Taguchi T, et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. P Natl Acad Sci USA. 2004;101(38):13885–13890.
  • Rezvani K, Yong AS, Mielke S, et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111(1):236–242.
  • Keilholz U, Letsch A, Busse A, et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood. 2009;113(26):6541–6548.
  • Maslak PG, Dao T, Krug LM, et al. Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood. 2010;116(2):171–179.
  • Tsuboi A, Oka Y, Kyo T, et al. Long-term WT1 peptide vaccination for patients with acute myeloid leukemia with minimal residual disease. Leukemia. 2012;26(6):1410–1413.
  • Anguille S, Van de Velde AL, Smits EL, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017;130(15):1713–1721.
  • Kobayashi Y, Sakura T, Miyawaki S, et al. A new peptide vaccine OCV-501: in vitro pharmacology and phase 1 study in patients with acute myeloid leukemia. Cancer Immunol Immunother. 2017;66(7):851–863.
  • Nakata J, Nakae Y, Kawakami M, et al. Wilms tumour 1 peptide vaccine as a cure-oriented post-chemotherapy strategy for patients with acute myeloid leukaemia at high risk of relapse. Br J Haematol. 2018;182(2):287–290.
  • Maslak PG, Dao T, Bernal Y, et al. Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Advances. 2018;2(3):224–234.
  • Hashii Y, Sato-Miyashita E, Matsumura R, et al. WT1 peptide vaccination following allogeneic stem cell transplantation in pediatric leukemic patients with high risk for relapse: successful maintenance of durable remission. Leukemia. 2012;26(3):530–532.
  • Maeda T, Hosen N, Fukushima K, et al. Maintenance of complete remission after allogeneic stem cell transplantation in leukemia patients treated with Wilms tumor 1 peptide vaccine. Blood Cancer J. 2013;3(8):e130–e130.
  • Tsuboi A, Oka Y, Nakajima H, et al. Wilms tumor gene WT1 peptide-based immunotherapy induced a minimal response in a patient with advanced therapy-resistant multiple myeloma. Int J Hematol. 2007;86(5):414–417.
  • Sawada A, Inoue M, Kondo O, et al. Feasibility of Cancer Immunotherapy with WT1 Peptide Vaccination for Solid and Hematological Malignancies in Children. Pediatr Blood Cancer. 2016;63(2):234–241.
  • Israyelyan A, La Rosa C, Tsai W, et al. Detection and preliminary characterization of CD8 + T lymphocytes specific for Wilms’ tumor antigen in patients with non-Hodgkin lymphoma. Leuke Lymphoma. 2013;54(11):2490–2499.
  • Rezvani K, Yong AS, Mielke S, et al. Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica. 2011;96(3):432–440.
  • Brayer J, Lancet JE, Powers J, et al. WT1 vaccination in AML and MDS: a pilot trial with synthetic analog peptides. Am J Hematol. 2015;90(7):602–607.
  • Oji Y, Oka Y, Nishida S, et al. WT1 peptide vaccine induces reduction in minimal residual disease in an Imatinib-treated CML patient. Euro J Haematol. 2010;85(4):358–360.
  • Narita M, Masuko M, Kurasaki T, et al. WT1 peptide vaccination in combination with imatinib therapy for a patient with CML in the chronic phase. Int J Med Sci. 2010;7(2):72–81.
  • Nakata J, Oji Y, Oka Y, et al. What should we tackle next in acute myeloid leukemia? Wilms tumor gene 1 vaccine therapy would be a promising and versatile strategy for acute myeloid leukemia. Expert Rev Hematol. 2019;12(4):211–213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.