165
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The pharmacokinetics of therapeutic arsenic trioxide in acute promyelocytic leukemia patients

, , , , , , & ORCID Icon show all
Pages 653-663 | Received 26 Feb 2021, Accepted 28 Aug 2021, Published online: 25 Oct 2021

References

  • Alcalay M, Zangrilli D, Pandolfi PP, et al. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor alpha locus. Proc Natl Acad Sci USA. 1991;88(5):1977–1981.
  • Alimoghaddam K. A review of arsenic trioxide and acute promyelocytic leukemia. Int J Hematol Oncol Stem Cell Res. 2014;8(3):44–54.
  • Leu L, Mohassel L. Arsenic trioxide as first-line treatment for acute promyelocytic leukemia. Am J Health Syst Pharm. 2009;66(21):1913–1918.
  • Powell BL, Moser B, Stock W, et al. Arsenic trioxide improves event-free and overall survival for adults with acute promyelocytic leukemia: North American leukemia intergroup study C9710. Blood. 2010;116(19):3751–3757.
  • Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369(2):111–121.
  • Burnett AK, Russell NH, Hills RK, et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2015;16(13):1295–1305. 2015/10/01/
  • Sanz MA, Fenaux P, Tallman MS, et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood. 2019;133(15):1630–1643.
  • Coombs CC, Tavakkoli M, Tallman MS. Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J. 2015;5(4):e304.
  • Tsuji JS, Alexander DD, Perez V, et al. Arsenic exposure and bladder cancer: quantitative assessment of studies in human populations to detect risks at low doses. Toxicology. 2014;317:17–30.
  • Moon KA, Oberoi S, Barchowsky A, et al. A dose-response meta-analysis of chronic arsenic exposure and incident cardiovascular disease. Int J Epidemiol. 2017;46(6):1924–1939.
  • Jomova K, Jenisova Z, Feszterova M, et al. Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol. 2011;31(2):95–107.
  • Yu S, Liao WT, Lee CH, et al. Immunological dysfunction in chronic arsenic exposure: from subclinical condition to skin cancer. J Dermatol. 2018;45(11):1271–1277.
  • Smith AH, Marshall G, Roh T, et al. Lung, bladder, and kidney cancer mortality 40 years after arsenic exposure reduction. J Natl Cancer Inst. 2018;110(3):241–249.
  • Oberoi S, Devleesschauwer B, Gibb HJ, et al. Global burden of cancer and coronary heart disease resulting from dietary exposure to arsenic, 2015. Environ Res. 2019;171:185–192.
  • Khairul I, Wang QQ, Jiang YH, et al. Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget. 2017;8(14):23905–23926.
  • Naranmandura H, Suzuki N, Suzuki KT. Trivalent arsenicals are bound to proteins during reductive methylation. Chem Res Toxicol. 2006;19(8):1010–1018.
  • Rehman K, Fu YJ, Zhang YF, et al. Trivalent methylated arsenic metabolites induce apoptosis in human myeloid leukemic HL-60 cells through generation of reactive oxygen species [10.1039/C4MT00119B]. Metallomics. 2014;6(8):1502–1512.
  • Chen GQ, Zhou L, Styblo M, et al. Methylated metabolites of arsenic trioxide are more potent than arsenic trioxide as apoptotic but not differentiation inducers in leukemia and lymphoma cells. Cancer Res. 2003;63(8):1853–1859.
  • Lancet JE, Moseley AB, Coutre SE, et al. A phase 2 study of ATRA, arsenic trioxide, and gemtuzumab ozogamicin in patients with high-risk APL (SWOG 0535). Blood Adv. 2020;4(8):1683–1689.
  • Hernández-Zavala A, Matoušek T, Drobná Z, et al. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer). J Anal at Spectrom. 2008;23:342–351.
  • Matoušek T, Hernández-Zavala A, Svoboda M, et al. Oxidation state specific generation of arsines from methylated arsenicals based on L- Cysteine treatment in buffered media for speciation analysis by hydride Generation–Automated Cryotrapping–Gas Chromatography-Atomic absorption spectrometry with the multiatomizer. Spectrochim Acta Part B at Spectrosc. 2008;63(3):396–406.
  • Nigra AE, Sanchez TR, Nachman KE, et al. The effect of the environmental protection agency maximum contaminant level on arsenic exposure in the USA from 2003 to 2014: an analysis of the national health and nutrition examination survey (NHANES). Lancet Public Health. 2017;2(11):e513–e521.
  • Currier JM, Ishida MC, González-Horta C, et al. Associations between arsenic species in exfoliated urothelial cells and prevalence of diabetes among residents of Chihuahua, Mexico. Environ Health Perspect. 2014;122(10):1088–1094.
  • Mink PJ, Alexander DD, Barraj LM, et al. Low-level arsenic exposure in drinking water and bladder cancer: a review and meta-analysis. Regul Toxicol Pharmacol. 2008;52(3):299–310.
  • Boffetta P, Borron C. Low-Level exposure to arsenic in drinking water and risk of lung and bladder cancer: a systematic review and dose-response meta-analysis. Dose Response. 2019;17(3):1559325819863634.
  • Naujokas MF, Anderson B, Ahsan H, et al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. 2013;121(3):295–302.
  • Cubadda F, Jackson BP, Cottingham KL, et al. Human exposure to dietary inorganic arsenic and other arsenic species: state of knowledge, gaps and uncertainties. Sci Total Environ. 2017;579:1228–1239.
  • Kuo CC, Moon KA, Wang SL, et al. The association of arsenic metabolism with cancer, cardiovascular disease, and diabetes: a systematic review of the epidemiological evidence. Environ Health Perspect. 2017;125(8):087001.
  • Vahter M, Concha G. Role of metabolism in arsenic toxicity. Pharmacol Toxicol. 2001;89(1):1–5.
  • Zhou Q, Xi S. A review on arsenic carcinogenesis: epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol. 2018;99:78–88.
  • Wang Z, Zhou J, Lu X, et al. Arsenic speciation in urine from acute promyelocytic leukemia patients undergoing arsenic trioxide treatment. Chem Res Toxicol. 2004;17(1):95–103.
  • Chen B, Cao F, Yuan C, et al. Arsenic speciation in saliva of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment. Anal Bioanal Chem. 2013;405(6):1903–1911.
  • Kiguchi T, Yoshino Y, Yuan B, et al. Speciation of arsenic trioxide penetrates into cerebrospinal fluid in patients with acute promyelocytic leukemia. Leuk Res. 2010;34(3):403–405.
  • Guo M, Wang W, Hai X, et al. HPLC-HG-AFS determination of arsenic species in acute promyelocytic leukemia (APL) plasma and blood cells. J Pharm Biomed Anal. 2017;145:356–363.
  • Zhang Z, Chen Y, Meng H, et al. Determination of arsenic metabolites in patients with newly diagnosed acute promyelocytic leukemia treated with arsenic trioxide. Leuk Lymphoma. 2013;54(9):2041–2046.
  • Yoshino Y, Yuan B, Miyashita SI, et al. Speciation of arsenic trioxide metabolites in blood cells and plasma of a patient with acute promyelocytic leukemia. Anal Bioanal Chem. 2009;393(2):689–697.
  • Iriyama N, Yoshino Y, Yuan B, et al. Speciation of arsenic trioxide metabolites in peripheral blood and bone marrow from an acute promyelocytic leukemia patient. J Hematol Oncol. 2012;5:1.
  • Chen B, Cao F, Lu X, et al. Arsenic speciation in hair and nails of acute promyelocytic leukemia (APL) patients undergoing arsenic trioxide treatment. Talanta. 2018;184:446–451.
  • Koller BH, Snouwaert JN, Douillet C, et al. Arsenic metabolism in mice carrying a BORCS7/AS3MT locus humanized by syntenic replacement. Environ Health Perspect. 2020;128(8):87003.
  • Li J, Packianathan C, Rossman TG, et al. Nonsynonymous polymorphisms in the human AS3MT arsenic methylation gene: implications for arsenic toxicity. Chem Res Toxicol. 2017;30(7):1481–1491.
  • Lu J, Hu S, Wang W, et al. AS3MT polymorphisms, arsenic metabolism, and the hematological and biochemical values in APL patients treated with arsenic trioxide. Toxicol Sci. 2018;166(1):219–227.
  • Liu W-S, Wang X-Y, Lu J, et al. Polymorphisms in arsenic (+ 3 oxidation state) methyltransferase (AS3MT) predict the occurrence of hyperleukocytosis and arsenic metabolism in APL patients treated with As2O3. Arch Toxicol. 2020;94(4):1203–1213.
  • Lu J, Yu K, Fan S, et al. Influence of AS3MT polymorphisms on arsenic metabolism and liver injury in APL patients treated with arsenic trioxide. Toxicol Appl Pharmacol. 2019;379:114687.
  • Huffman DH, Benjamin RS, Bachur NR. Daunorubicin metabolism in acute nonlymphocytic leukemia. Clin Pharmacol Ther. 1972;13(6):895–905.
  • Wiley JS, Taupin J, Jamieson GP, et al. Cytosine arabinoside transport and metabolism in acute leukemias and T cell lymphoblastic lymphoma. J Clin Invest. 1985;75(2):632–642.
  • Lockhart AC, Tirona RG, Kim RB. Pharmacogenetics of ATP-binding cassette transporters in cancer and chemotherapy. Mol Cancer Ther. 2003;2(7):685–698.
  • Drobná Z, Walton FS, Paul DS, et al. Metabolism of arsenic in human liver: the role of membrane transporters. Arch Toxicol. 2010;84(1):3–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.