3,744
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Cytoplasmic CD79a is a promising biomarker for B lymphoblastic leukemia follow up post CD19 CAR-T therapy

ORCID Icon, , , , , , , , , , , & ORCID Icon show all
Pages 426-434 | Received 04 Mar 2021, Accepted 06 Sep 2021, Published online: 21 Oct 2021

References

  • Chen Y, Zhang X, Cheng Y, et al. Long-term follow-up of CD19 chimeric antigen receptor T-cell therapy for relapsed/refractory acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Cytotherapy. 2020;22(12):755–761.
  • Xia AL, Wang XC, Lu YJ, et al. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities. Oncotarget. 2017;8(52):90521–90531.
  • Gardner RA, Finney O, Annesley C, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129(25):3322–3331.
  • Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–28.
  • Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev. 2015;263(1):68–89.
  • Maude SL, Teachey DT, Porter DL, et al. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017–4023.
  • Zhang X, Lu XA, Yang J, et al. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020;4(10):2325–2338.
  • Schrappe M. Detection and management of minimal residual disease in acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2014;2014(1):244–249.
  • Salari F, Shahjahani M, Shahrabi S, et al. Minimal residual disease in acute lymphoblastic leukemia: optimal methods and clinical relevance, pitfalls and recent approaches. Med Oncol. 2014;31(11):266.
  • Cherian S, Stetler-Stevenson M. Flow cytometric monitoring for residual disease in B lymphoblastic leukemia post T cell engaging targeted therapies. Curr Protoc Cytom. 2018;86(1):e44.
  • Yu J, Dong J, Jia Y, et al. Individualized leukemia cell-population profiles in common B-cell acute lymphoblastic leukemia patients. Chin J Cancer. 2013;32(4):213–223.
  • Paredes-Aguilera R, Romero-Guzman L, Lopez-Santiago N, et al. Flow cytometric analysis of cell-surface and intracellular antigens in the diagnosis of acute leukemia. Am J Hematol. 2001;68(2):69–74.
  • Sakatani A, Igawa T, Okatani T, et al. Clinicopathological significance of CD79a expression in classic Hodgkin lymphoma. J Clin Exp Hematop. 2020;60(3):78–86.
  • Lenk L, Carlet M, Vogiatzi F, et al. CD79a promotes CNS-infiltration and leukemia engraftment in pediatric B-cell precursor acute lymphoblastic leukemia. Commun Biol. 2021;4(1):73.
  • Wang Z, Wu Z, Liu Y, et al. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10(1):53.
  • June CH, O'Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–1365.
  • Wei G, Ding L, Wang J, et al. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp Hematol Oncol. 2017;6:10.
  • Hrabovsky S, Folber F, Horacek JM, et al. Comparison of real-time quantitative polymerase chain reaction and eight-color flow cytometry in assessment of minimal residual disease in adult acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2018;18(11):743–748.
  • Huang YJ, Coustan-Smith E, Kao HW, et al. Concordance of two approaches in monitoring of minimal residual disease in B-precursor acute lymphoblastic leukemia: fusion transcripts and leukemia-associated immunophenotypes. J Formos Med Assoc. 2017;116(10):774–781.
  • Cherian S, Miller V, McCullouch V, et al. A novel flow cytometric assay for detection of residual disease in patients with B-lymphoblastic leukemia/lymphoma post anti-CD19 therapy. Cytometry B Clin Cytom. 2018;94(1):112–120.
  • Schwartz S, Rieder H, Schlager B, et al. Expression of the human homologue of rat NG2 in adult acute lymphoblastic leukemia: close association with MLL rearrangement and a CD10(–)/CD24(–)/CD65s(+)/CD15(+) B-cell phenotype. Leukemia. 2003;17(8):1589–1595.
  • Lanza F, Maffini E, Rondoni M, et al. CD22 expression in B-cell acute lymphoblastic leukemia: biological significance and implications for inotuzumab therapy in adults. Cancers. 2020;12(2):303.
  • Shah NN, Stevenson MS, Yuan CM, et al. Characterization of CD22 expression in acute lymphoblastic leukemia. Pediatr Blood Cancer. 2015;62(6):964–969.
  • Velasco-Hernandez T, Zanetti SR, Roca-Ho H, et al. Efficient elimination of primary B-ALL cells in vitro and in vivo using a novel 4-1BB-based CAR targeting a membrane-distal CD22 epitope. J Immunother Cancer. 2020;8(2):e000896.
  • Yang F, Zhang J, Zhang X, et al. Delayed remission following sequential infusion of humanized CD19- and CD22-modified CAR-T cells in a patient with relapsed/refractory acute lymphoblastic leukemia and prior exposure to murine-derived CD19-directed CAR-T cells. Onco Targets Ther. 2019;12:2187–2191.
  • Jia H, Wang Z, Wang Y, et al. Haploidentical CD19/CD22 bispecific CAR-T cells induced MRD-negative remission in a patient with relapsed and refractory adult B-ALL after haploidentical hematopoietic stem cell transplantation. J Hematol Oncol. 2019;12(1):57.
  • Dai H, Wu Z, Jia H, et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J Hematol Oncol. 2020;13(1):30.