321
Views
1
CrossRef citations to date
0
Altmetric
Reviews

NOTCH signaling in the pathogenesis of splenic marginal zone lymphoma—opportunities for therapy

&
Pages 279-290 | Received 11 Jun 2021, Accepted 07 Sep 2021, Published online: 29 Sep 2021

References

  • Swerdlow SC, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th rev ed. Lyon: IARC Press; 2017.
  • Florindez JA, Alderuccio JP, Reis IM, et al. Splenic marginal zone lymphoma: a US population-based survival analysis (1999–2016). Cancer. 2020;126:4706–4716.
  • Alderuccio JP, Lossos IS. Prognostic factors and risk of transformation in marginal zone lymphoma. Ann Lymphoma. 2020;4:6.
  • de Sanjose S, Benavente Y, Vajdic CM, et al. Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the international lymphoma epidemiology consortium. Clin Gastroenterol Hepatol. 2008;6(4):451–458.
  • Peveling-Oberhag J, Crisman G, Schmidt A, et al. Dysregulation of global microRNA expression in splenic marginal zone lymphoma and influence of chronic hepatitis C virus infection. Leukemia. 2012;26(7):1654–1662.
  • Rossi D, Trifonov V, Fangazio M, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 2012;209(9):1537–1551.
  • Spina V, Mensah A, Arribas AJ. Biology of splenic and nodal marginal zone lymphomas. Ann Lymphoma. 2021;5:6.
  • Watkins AJ, Hamoudi RA, Zeng N, et al. An integrated genomic and expression analysis of 7q deletion in splenic marginal zone lymphoma. PLoS One. 2012;7(9):e44997.
  • Fresquet V, Robles EF, Parker A, et al. High-throughput sequencing analysis of the chromosome 7q32 deletion reveals IRF5 as a potential tumour suppressor in splenic marginal-zone lymphoma. Br J Haematol. 2012;158(6):712–726.
  • Jaramillo Oquendo C, Parker H, Oscier D, et al. Systematic review of somatic mutations in splenic marginal zone lymphoma. Sci Rep. 2019;9(1):10444.
  • Chiang MY, Radojcic V, Maillard I. Oncogenic notch signaling in T-cell and B-cell lymphoproliferative disorders. Curr Opin Hematol. 2016;23(4):362–370.
  • Arruga F, Vaisitti T, Deaglio S. The NOTCH pathway and its mutations in mature B cell malignancies. Front Oncol. 2018;8:550.
  • Lue JK, O’Connor OA, Bertoni F. Targeting pathogenic mechanisms in marginal zone lymphoma: from concepts and beyond. Ann Lymphoma. 2020;4:7.
  • Raya A, Kawakami Y, Rodríguez-Esteban C, et al. Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature. 2004;427(6970):121–128.
  • Radojcic V, Maillard I. A jagged road to lymphoma aggressiveness. Cancer Cell. 2014;25(3):261–263.
  • Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–271.
  • Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678–689.
  • Selkoe D, Kopan R. Notch and presenilin: regulated intramembrane proteolysis links development and degeneration. Annu Rev Neurosci. 2003;26:565–597.
  • Ayaz F, Osborne BA. Non-canonical notch signaling in cancer and immunity. Front Oncol. 2014;4:345.
  • Nam Y, Weng AP, Aster JC, et al. Structural requirements for assembly of the CSL.intracellular Notch1.Mastermind-like 1 transcriptional activation complex. J Biol Chem. 2003;278(23):21232–21239.
  • Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66(4):649–661.
  • Pear WS, Aster JC, Scott ML, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated notch alleles. J Exp Med. 1996;183(5):2283–2291.
  • Talora C, Sgroi DC, Crum CP, et al. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 2002;16(17):2252–2263.
  • Chu J, Jeffries S, Norton JE, et al. Repression of activator protein-1-mediated transcriptional activation by the notch-1 intracellular domain. J Biol Chem. 2002;277(9):7587–7597.
  • Sorrentino C, Cuneo A, Roti G. Therapeutic targeting of notch signaling pathway in hematological malignancies. Mediterr J Hematol Infect Dis. 2019;11(1):e2019037.
  • Radtke F, MacDonald HR, Tacchini-Cottier F. Regulation of innate and adaptive immunity by notch. Nat Rev Immunol. 2013;13(6):427–437.
  • Saito T, Chiba S, Ichikawa M, et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity. 2003;18(5):675–685.
  • Meurette O, Mehlen P. Notch signaling in the tumor microenvironment. Cancer Cell. 2018;34(4):536–548.
  • Witt CM, Won WJ, Hurez V, et al. Notch2 haploinsufficiency results in diminished B1 B cells and a severe reduction in marginal zone B cells. J Immunol. 2003;171(6):2783–2788.
  • Hernandez Tejada FN, Galvez Silva JR, Zweidler-McKay PA. The challenge of targeting notch in hematologic malignancies. Front Pediatr. 2014;2:54.
  • Tanigaki K, Han H, Yamamoto N, et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat Immunol. 2002;3(5):443–450.
  • Di Ianni M, Baldoni S, Rosati E, et al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. Br J Haematol. 2009;146(6):689–691.
  • Jeromin S, Weissmann S, Haferlach C, et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia. 2014;28(1):108–117.
  • Karube K, Martínez D, Royo C, et al. Recurrent mutations of NOTCH genes in follicular lymphoma identify a distinctive subset of tumours. J Pathol. 2014;234(3):423–430.
  • O'Neil J, Grim J, Strack P, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007;204(8):1813–1824.
  • Schwarzer R, Dörken B, Jundt F. Notch is an essential upstream regulator of NF-κB and is relevant for survival of Hodgkin and Reed-Sternberg cells. Leukemia. 2012;26(4):806–813.
  • Fabbri G, Rasi S, Rossi D, et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med. 2011;208(7):1389–1401.
  • Lobry C, Oh P, Mansour MR, et al. Notch signaling: switching an oncogene to a tumor suppressor. Blood. 2014;123(16):2451–2459.,
  • Lobry C, Ntziachristos P, Ndiaye-Lobry D, et al. Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J Exp Med. 2013;210(2):301–319.
  • Kannan S, Fang W, Song G, et al. Notch/HES1-mediated PARP1 activation: a cell type-specific mechanism for tumor suppression. Blood. 2011;117(10):2891–2900.
  • Majumder S, Crabtree JS, Golde TE, et al. Targeting notch in oncology: the path forward. Nat Rev Drug Discov. 2021;20(2):125–144.
  • Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, et al. Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a group for research in adult acute lymphoblastic leukemia study. J Clin Oncol. 2013;31(34):4333–4342.
  • Witkowski MT, Cimmino L, Hu Y, et al. Activated notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia. Leukemia. 2015;29(6):1301–1311.
  • Onaindia A, Medeiros LJ, Patel KP. Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms. Mod Pathol. 2017;30(10):1338–1366.
  • Aydin S, Rossi D, Bergui L, et al. CD38 gene polymorphism and chronic lymphocytic leukemia: a role in transformation to Richter syndrome? Blood. 2008;111(12):5646–5653.
  • Thomas M, Calamito M, Srivastava B, et al. Notch activity synergizes with B-cell-receptor and CD40 signaling to enhance B-cell activation. Blood. 2007;109(8):3342–3350.
  • Cao Z, Ding BS, Guo P, et al. Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell. 2014;25(3):350–365.
  • Gragnani L, Lorini S, Marri S, et al. Role of notch receptors in hematologic malignancies. Cells. 2020;10:16.
  • Somnay YR, Yu XM, Lloyd RV, et al. Notch3 expression correlates with thyroid cancer differentiation, induces apoptosis, and predicts disease prognosis. Cancer. 2017;123(5):769–782.
  • Nwabo Kamdje AH, Mosna F, Bifari F, et al. Notch-3 and notch-4 signaling rescue from apoptosis human B-ALL cells in contact with human bone marrow-derived mesenchymal stromal cells. Blood. 2011;118(2):380–389.
  • Jain P, Zhang S, Kanagal-Shamanna R, et al. Genomic profiles and clinical outcomes of de novo blastoid/pleomorphic MCL are distinct from those of transformed MCL. Blood Adv. 2020;4(6):1038–1050.
  • Gragnani L, Fognani E, De Re V, et al. Notch4 and MHC class II polymorphisms are associated with HCV-related benign and malignant lymphoproliferative diseases. Oncotarget. 2017;8(42):71528–71535.
  • Martínez N, Almaraz C, Vaqué JP, et al. Whole-exome sequencing in splenic marginal zone lymphoma reveals mutations in genes involved in marginal zone differentiation. Leukemia. 2014;28(6):1334–1340.
  • Kiel MJ, Velusamy T, Betz BL, et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 2012;209(9):1553–1565.
  • Campos-Martín Y, Martínez N, Martínez-López A, et al. Clinical and diagnostic relevance of NOTCH2-and KLF2-mutations in splenic marginal zone lymphoma. Haematologica. 2017;102(8):e310–e312.
  • Trøen G, Nygaard V, Jenssen TK, et al. Constitutive expression of the AP-1 transcription factors c-jun, junD, junB, and c-fos and the marginal zone B-cell transcription factor Notch2 in splenic marginal zone lymphoma. J Mol Diagn. 2004;6(4):297–307.
  • Spina V, Khiabanian H, Messina M, et al. The genetics of nodal marginal zone lymphoma. Blood. 2016;128(10):1362–1373.
  • Shanmugam V, Craig JW, Hilton LK, et al. Notch activation is pervasive in SMZL and uncommon in DLBCL: implications for notch signaling in B-cell tumors. Blood Adv. 2021;5(1):71–83.
  • Arasu A, Balakrishnan P, Velusamy T. RNA sequencing analyses reveal differentially expressed genes and pathways as Notch2 targets in B-cell lymphoma. Oncotarget. 2020;11(48):4527–4540.
  • Ryan RJH, Petrovic J, Rausch D, et al. Notch-regulated enhancers in B-Cell lymphoma activate MYC and potentiate B-Cell receptor signaling. Blood. 2016;128(22):457–457.
  • Hart GT, Wang X, Hogquist KA, et al. Krüppel-like factor 2 (KLF2) regulates B-cell reactivity, subset differentiation, and trafficking molecule expression. Proc Natl Acad Sci USA. 2011;108(2):716–721.
  • Winkelmann R, Sandrock L, Porstner M, et al. B cell homeostasis and plasma cell homing controlled by Krüppel-like factor 2. Proc Natl Acad Sci USA. 2011;108(2):710–715.
  • Piva R, Deaglio S, Famà R, et al. The Krüppel-like factor 2 transcription factor gene is recurrently mutated in splenic marginal zone lymphoma. Leukemia. 2015;29(2):503–507.
  • Du M-Q. Pathogenesis of splenic marginal zone lymphoma. Pathogenesis. 2015;2(4):11–20.
  • Clipson A, Wang M, de Leval L, et al. KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype. Leukemia. 2015;29(5):1177–1185.
  • Parry M, Rose-Zerilli MJ, Ljungström V, et al. Genetics and prognostication in splenic marginal zone lymphoma: revelations from deep sequencing. Clin Cancer Res. 2015;21(18):4174–4183.
  • Guidetti F, Bruscaggin A, Frigeni M, et al. Molecular subtypes of splenic marginal zone lymphoma (SMZL) are associated with distinct pathogenic mechanisms and outcomes–interim analysis of the IELSG46 study. Blood. 2018;132(Supplement 1):922–922.
  • Arribas AJ, Rinaldi A, Mensah AA, et al. DNA methylation profiling identifies two splenic marginal zone lymphoma subgroups with different clinical and genetic features. Blood. 2015;125(12):1922–1931.
  • Takasugi N, Tomita T, Hayashi I, et al. The role of presenilin cofactors in the gamma-secretase complex. Nature. 2003;422(6930):438–441.
  • Colombo M, Galletti S, Garavelli S, et al. Notch signaling deregulation in multiple myeloma: a rational molecular target. Oncotarget. 2015;6(29):26826–26840.
  • Wu Y, Cain-Hom C, Choy L, et al. Therapeutic antibody targeting of individual notch receptors. Nature. 2010;464(7291):1052–1057.
  • van Es JH, van Gijn ME, Riccio O, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005;435(7044):959–963.
  • Real PJ, Ferrando AA. NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia. Leukemia. 2009;23(8):1374–1377.
  • Katz JP, Perreault N, Goldstein BG, et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development. 2002;129(11):2619–2628.
  • Samon JB, Castillo-Martin M, Hadler M, et al. Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. Mol Cancer Ther. 2012;11(7):1565–1575.
  • López-Nieva P, González-Sánchez L, Cobos-Fernández M, et al. More insights on the use of γ-secretase inhibitors in cancer treatment. Oncologist. 2021;26(2):e298–e305.
  • Konishi J, Kawaguchi KS, Vo H, et al. Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res. 2007;67(17):8051–8057.
  • Mizugaki H, Sakakibara-Konishi J, Ikezawa Y, et al. γ-Secretase inhibitor enhances antitumour effect of radiation in notch-expressing lung cancer. Br J Cancer. 2012;106(12):1953–1959.
  • Ramakrishnan V, Ansell S, Haug J, et al. MRK003, a γ-secretase inhibitor exhibits promising in vitro pre-clinical activity in multiple myeloma and non-Hodgkin's lymphoma. Leukemia. 2012;26(2):340–348.
  • Cullion K, Draheim KM, Hermance N, et al. Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood. 2009;113(24):6172–6181.
  • Shepherd C, Banerjee L, Cheung CW, et al. PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response. Leukemia. 2013;27(3):650–660.
  • Knoechel B, Roderick JE, Williamson KE, et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet. 2014;46(4):364–370.
  • Hayashi I, Takatori S, Urano Y, et al. Neutralization of the γ-secretase activity by monoclonal antibody against extracellular domain of nicastrin. Oncogene. 2012;31(6):787–798.
  • Massard C, Azaro A, Soria JC, et al. First-in-human study of LY3039478, an oral notch signaling inhibitor in advanced or metastatic cancer. Ann Oncol. 2018;29(9):1911–1917.
  • Borthakur G, Martinelli G, Raffoux E, et al. Phase 1 study to evaluate crenigacestat (LY3039478) in combination with dexamethasone in patients with T-cell acute lymphoblastic leukemia and lymphoma. Cancer. 2021;127(3):372–380.
  • Gordon WR, Vardar-Ulu D, Histen G, et al. Structural basis for autoinhibition of notch. Nat Struct Mol Biol. 2007;14(4):295–300.
  • Silkenstedt E, Arenas F, Colom-Sanmartí B, et al. Notch1 signaling in NOTCH1-mutated mantle cell lymphoma depends on Delta-like ligand 4 and is a potential target for specific antibody therapy. J Exp Clin Cancer Res. 2019;38(1):446.
  • Casulo C, Ruan J, Dang NH, et al. Safety and preliminary efficacy results of a phase I first-in-Human study of the novel notch-1 targeting antibody brontictuzumab (OMP-52M51) administered intravenously to patients with hematologic malignancies. Blood. 2016;128:5108–5108.
  • Yen W-C, Fischer MM, Axelrod F, et al. Targeting notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res. 2015;21(9):2084–2095.
  • Hu ZI, Bendell JC, Bullock A, et al. A randomized phase II trial of nab-paclitaxel and gemcitabine with tarextumab or placebo in patients with untreated metastatic pancreatic cancer. Cancer Med. 2019;8(11):5148–5157.
  • Daniel DB, Rudin CM, Hart L, et al. Results of a randomized, placebo-controlled, phase 2 study of tarextumab (TRXT, anti-Notch2/3) in combination with etoposide and platinum (EP) in patients (pts) with untreated extensive-stage small-cell lung cancer (ED-SCLC). Ann Oncol. 2017;28:v540.
  • Spriano F, Tarantelli C, Arribas A, et al. Abstract B061: targeting lymphomas with the novel first-in-class pan-NOTCH transcription inhibitor CB-103. Mol Cancer Ther. 2018;17:B061.
  • Garcia JMP, Cortés J, Stathis A, et al. First-in-human phase 1-2A study of CB-103, an oral protein-protein interaction inhibitor targeting pan-NOTCH signalling in advanced solid tumors and blood malignancies. J Clin Oncol. 2018;36(15_suppl):TPS2619–TPS2619.
  • Hubmann R, Hilgarth M, Schnabl S, et al. Gliotoxin is a potent NOTCH2 transactivation inhibitor and efficiently induces apoptosis in chronic lymphocytic leukaemia (CLL) cells. Br J Haematol. 2013;160(5):618–629.
  • Ramakrishnan S, Hu Q, Krishnan N, et al. Decitabine, a DNA-demethylating agent, promotes differentiation via NOTCH1 signaling and alters immune-related pathways in muscle-invasive bladder cancer. Cell Death Dis. 2017;8(12):3217.
  • Arribas A, Gaudio E, Arcaini L, et al. Targeting the epigenome and the cell signaling as novel therapeutic approaches for splenic marginal zone lymphoma. Blood. 2016;128(22):4186–4186.
  • Noy A, de Vos S, Coleman M, et al. Durable ibrutinib responses in relapsed/refractory marginal zone lymphoma: long-term follow-up and biomarker analysis. Blood Adv. 2020;4(22):5773–5784.
  • Koyama D, Kikuchi J, Hiraoka N, et al. Proteasome inhibitors exert cytotoxicity and increase chemosensitivity via transcriptional repression of Notch1 in T-cell acute lymphoblastic leukemia. Leukemia. 2014;28(6):1216–1226.
  • Duechler M, Shehata M, Schwarzmeier JD, et al. Induction of apoptosis by proteasome inhibitors in B-CLL cells is associated with downregulation of CD23 and inactivation of Notch2. Leukemia. 2005;19(2):260–267.
  • Troch M, Jonak C, Müllauer L, et al. A phase II study of bortezomib in patients with MALT lymphoma. Haematologica. 2009;94(5):738–742.
  • Hill BT, Jagadeesh D, Mejia Garcia AV, et al. Results of a phase I trial of lenalidomide, rituximab (R2) and ixazomib for frontline treatment of high risk follicular and indolent Non-Hodgkin lymphoma. Blood. 2020;136(Supplement 1):1–2.
  • Takebe N, Miele L, Harris PJ, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12(8):445–464.
  • Ortega-Molina A, Boss IW, Canela A, et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat Med. 2015;21(10):1199–1208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.