204
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Fish evaluation of additional cytogenetic aberrations and hyperdiploidy in childhood Burkitt lymphoma

, , , , , , , , , , ORCID Icon, , & show all
Pages 551-561 | Received 08 Apr 2021, Accepted 11 Oct 2021, Published online: 02 Nov 2021

References

  • Molyneux EM, Rochford R, Griffin B, et al. Burkitt’s lymphoma. Lancet. 2012;379(9822):1234–1244.
  • Leoncini L, Campo E, Stein H, et al. Burkitt lymphoma. In: Swerdlow SH, Campo E, Harris NL, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues, Revised 4th ed. Lyon: IARC Press; 2017. p. 330–334.
  • Berger R, Bernheim A. Cytogenetic studies on Burkitt's lymphoma-leukemia. Cancer Genet Cytogenet. 1982;7(3):231–244.
  • Knuutila S, Elonen E, Heinonen K, et al. Chromosome abnormalities in 16 Finnish patients with Burkitt’s lymphoma or L3 acute lymphocytic leukemia. Cancer Genet Cytogenet. 1984;13(2):139–151.
  • Berger R, Le Coniat M, Derré J, et al. Secondary nonrandom chromosomal abnormalities of band 13q34 in burkitt lymphoma-leukemia. Genes Chromosomes Cancer. 1989;1(2):115–118.
  • Lai JL, Fenaux P, Zandecki M, et al. Cytogenetic studies in 30 patients with Burkitt’s lymphoma or L3 acute lymphoblastic leukemia with special reference to additional chromosome abnormalities. Ann Genet. 1989;32(1):26–32.
  • Barin C, Valtat C, Briault S, et al. Structural rearrangements of chromosome 13 as additional abnormalities in Burkitt lymphoma and type 3 acute lymphoblastic leukemia. Cancer Genet Cytogenet. 1992;60(2):206–209.
  • Havelange V, Ameye G, Théate I, et al. Patterns of genomic aberrations suggest that Burkitt lymphomas with complex karyotype are distinct from other aggressive B-cell lymphomas with MYC rearrangement). Genes Chromosomes Cancer. 2013;52(1):81–92.
  • Havelange V, Pepermans X, Ameye G, et al. Genetic differences between paediatric and adult Burkitt lymphomas. Br J Haematol. 2016;173(1):137–144.
  • Toujani S, Dessen P, Ithzar N, et al. High resolution genome-wide analysis of chromosomal alterations in Burkitt’s lymphoma. PLoS One. 2009;4(9):e7089.
  • Scholtysik R, Kreuz M, Klapper W, et al. Detection of genomic aberrations in molecularly defined Burkitt’s lymphoma by array-based, high resolution, single nucleotide polymorphism analysis. Haematologica. 2010;95(12):2047–2055.
  • Schiffman JD, Lorimer PD, Rodic V, et al. Genome wide copy number analysis of paediatric Burkitt lymphoma using Formalin-Fixed tissues reveals a subset with gain of chromosome 13q and corresponding miRNA over expression. Br J Haematol. 2011; Nov; 155(4):477–486.
  • Lundin C, Hjorth L, Behrendtz M, et al. Patterns and frequencies of acquired and constitutional uniparental isodisomies in pediatric and adult B‐cell precursor acute lymphoblastic leukemia. Genes Chromosom Cancer. 2013;52(4):370–377.
  • Aukema SM, Theil L, Rohde M, et al. Sequential karyotyping in Burkitt lymphoma reveals a linear clonal evolution with increase in karyotype complexity and a high frequency of recurrent secondary aberrations. Br J Haematol. 2015;170(6):814–825.
  • Murga Penas EM, Schilling G, Behrmann P, et al. Comprehensive cytogenetic and molecular cytogenetic analysis of 44 Burkitt lymphoma cell lines: secondary chromosomal changes characterization, karyotypic evolution, and comparison with primary samples. Genes Chromosomes Cancer. 2014;53(6):497–515.
  • García JL, Hernandez JM, Gutiérrez NC, et al. Abnormalities on 1q and 7q are associated with poor outcome in sporadic Burkitt’s lymphoma. A cytogenetic and comparative genomic hybridization study. Leukemia. 2003;17(10):2016–2024.
  • Lones MA, Sanger WG, Le Beau MM, et al. Chromosome abnormalities may correlate with prognosis in Burkitt/Burkitt-like lymphomas of children and adolescents: a report from Children's Cancer Group Study CCG-E08. J Pediatr Hematol Oncol. 2004;26(3):169–178.
  • Onciu M, Schlette E, Zhou Y, et al. Secondary chromosomal abnormalities predict outcome in pediatric and adult high-stage Burkitt lymphoma. Cancer. 2006;107(5):1084–1092.
  • Poirel HA, Cairo MS, Heerema NA, et al. Specific cytogenetic abnormalities are associated with a significantly inferior outcome in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Leukemia. 2009;23(2):323–331.
  • Nelson M, Perkins SL, Dave BJ, et al. An increased frequency of 13q deletions detected by fluorescence in situ hybridization and its impact on survival in children and adolescents with Burkitt lymphoma: results from the Children’s Oncology Group study CCG-5961. Br J Haematol. 2010;148(4):600–610.
  • Tavares de Souza M, Mkrtchyan H, R, Hassan R, et al. Secondary abnormalities involving 1q or 13q and poor outcome in high stage Burkitt leukemia/lymphoma cases with 8q24 rearrangement at diagnosis. Int J Hematol. 2011;93(2):232–236.
  • De Souza MT, Hassan R, Liehr T, et al. Conventional and molecular cytogenetic characterization of Burkitt lymphoma with bone marrow involvement in Brazilian children and adolescents. Pediatr Blood Cancer. 2014; 61(8):1422–1426.
  • Mitelman F, Johansson B and Mertens F (eds). Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer 2020. https://mitelmandatabase.isb-cgc.org. 23.
  • Smol T, Dufour A, Tricot S, et al. Combination of t(4;14), del(17p13), del(1p32) and 1q21 gain FISH probes identifies clonal heterogeneity and enhances the detection of adverse cytogenetic profiles in 233 newly diagnosed multiple myeloma. Mol Cytogenet. 2017;Jul 110:26.
  • Kostopoulos IV, Paterakis G, Papadimitriou K, et al. Immunophenotypic analysis reveals heterogeneity and common biologic aspects in monoclonal B-cell lymphocytosis. Genes Chromosomes Cancer. 2015;54(4):210–221.
  • Ferrando AA, Look AT. Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol. 2000;37(4):381–395.
  • Stott FJ, Bates S, James MC, et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. Embo J. 1998;17(17):5001–5014.
  • Kim DH, Moldwin RL, Vignon C, et al. TEL-AML1 translocations with TEL and CDKN2 inactivation in acute lymphoblastic leukemia cell lines. Blood. 1996;88(3):785–794.
  • Greaves M. Molecular genetics, natural history and the demise of childhood leukaemia. Eur J Cancer. 1999;35(14):1941–1953.
  • Schmitt CA, Mc Currach ME, de Stanchina E, et al. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 1999;13(20):2670–2677.
  • Heerema NA, Harbott J, Galimberti S, et al. For the acute lymphoblastic leukemia study groups: ALL-BFM and CoALL (Germany), AIEOP (Italy), DCLSG (Netherlands), FRALLE (France), CCG, DFCI, POG and St Jude (USA), and UKALL (UK). secondary cytogenetic aberrations in childhood Philadelphia chromosome positive acute lymphoblastic leukemia are nonrandom and may be associated with outcome. Leukemia. 2004;18:693–702.
  • Short NJ, Kantarjian HM, Sasaki K, et al. Poor outcomes associated with + der(22)t(9;22) and -9/9p in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia receiving chemotherapy plus a tyrosine kinase inhibitor. Am J Hematol. 2017;92(3):238–243.
  • Papadhimitriou SI, Polychronopoulou S, Tsakiridou AA, et al. p16 inactivation associated with aggressive clinical course and fatal outcome in TEL/AML1-positive acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2005;27(12):675–677.
  • Ampatzidou M, Papadhimitriou SI, Paterakis G, et al. ETV6/RUNX1-positive childhood acute lymphoblastic leukemia (ALL): the spectrum of clonal heterogeneity and its impact on prognosis. Cancer Genet. 2018;224–225:1–11.
  • Robaina MC, Faccion RS, Arruda VO, et al. Quantitative analysis of CDKN2A methylation, mRNA, and p16(INK4a) protein expression in children and adolescents with Burkitt lymphoma: biological and clinical implications. Leuk Res. 2015;39(2):248–256.
  • Ito C, Kumagai M, Manabe A, et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood. 1999;93(1):315–320.
  • Zhang Y, Lu J, van den Berghe J, et al. Increased incidence of spontaneous apoptosis in the bone marrow of hyperdiploid childhood acute lymphoblastic leukemia. Exp Hematol. 2002;30(4):333–339.
  • Whitehead VM, Vuchich MJ, Lauer SJ, et al. Accumulation of high levels of methotrexate polyglutamates in lymphoblasts from children with hyperdiploid (>50 chromosomes) B-lineage ALL. A pediatric oncology group study. Blood. 1992;80(5):1316–1323.
  • Kumar S, Fonseca R, Ketterling RP, et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood. 2012;119(9):2100–2105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.