195
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Aberrant ENPP2 expression promotes tumor progression in multiple myeloma

, , , , , , & show all
Pages 963-974 | Received 04 May 2021, Accepted 14 Nov 2021, Published online: 30 Nov 2021

References

  • Rasche L, Kortüm KM, Raab MS, et al. The impact of tumor heterogeneity on diagnostics and novel therapeutic strategies in multiple myeloma. Int J Mol Sci. 2019;20(5):1248.
  • Panaroni C, Yee AJ, Raje NS. Myeloma and bone disease. Curr Osteoporos Rep. 2017;15(5):483–498.
  • Morris EV, Edwards CM. Bone marrow adiposity and multiple myeloma. Bone. 2019;118:42–46.
  • Delgado-Calle J, Anderson J, Cregor MD, et al. Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 2016;76(5):1089–1100.
  • Łacina P, Butrym A, Humiński M, et al. Association of RANK and RANKL gene polymorphism with survival and calcium levels in multiple myeloma. Mol Carcinog. 2021;60(2):106–112.
  • Robak P, Węgłowska E, Dróżdż I, et al. Cytokine and chemokine profile in patients with multiple myeloma treated with bortezomib. Mediators Inflamm. 2020;2020:1–13.
  • Xu Y, Guo J, Liu J, et al. Hypoxia-induced CREB cooperates MMSET to modify chromatin and promote DKK1 expression in multiple myeloma. Oncogene. 2021;40(7):1231–1241.
  • Berenson A, Vardanyan S, David M, et al. Outcomes of multiple myeloma patients receiving bortezomib, lenalidomide, and carfilzomib. Ann Hematol. 2017;96(3):449–459.
  • Xu J, Sun HY, Xiao FJ, et al. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling. Biochem Biophys Res Commun. 2015;460(2):409–415.
  • Greenberg AJ, Rajkumar SV, Therneau TM, et al. Relationship between initial clinical presentation and the molecular cytogenetic classification of myeloma. Leukemia. 2014;28(2):398–403.
  • Sah JP, Hao NTT, Han X, et al. Ectonucleotide pyrophosphatase 2 (ENPP2) plays a crucial role in myogenic differentiation through the regulation by WNT/β-catenin signaling. Int J Biochem Cell Biol. 2020;118:105661.
  • Stracke ML, Krutzsch HC, Unsworth EJ, et al. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem. 1992;267(4):2524–2529.
  • Tripathi H, Al-Darraji A, Abo-Aly M, et al. Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction. J Mol Cell Cardiol. 2020;149:95–114.
  • Kaffe E, Magkrioti C, Aidinis V. Deregulated lysophosphatidic acid metabolism and signaling in liver cancer. Cancers. 2019;11(11):1626.
  • Lee SC, Fujiwara Y, Liu J, et al. Autotaxin and LPA1 and LPA5 receptors exert disparate functions in tumor cells versus the host tissue microenvironment in melanoma invasion and metastasis. Mol Cancer Res. 2015;13(1):174–185.
  • Magkrioti C, Oikonomou N, Kaffe E, et al. The autotaxin-lysophosphatidic acid axis promotes lung carcinogenesis. Cancer Res. 2018;78(13):3634–3644.
  • Quan M, Cui JJ, Feng X, et al. The critical role and potential target of the autotaxin/lysophosphatidate axis in pancreatic cancer. Tumour Biol. 2017;39(3):1010428317694544.
  • Shim SJ, Shin E, Lee CS, et al. The expressions of autotaxin-lysophosphatidate signaling-related proteins in metastatic breast cancer. Int J Clin Exp Pathol. 2019;12(8):2920–2930.
  • Kaffe E, Katsifa A, Xylourgidis N, et al. Hepatocyte autotaxin expression promotes liver fibrosis and cancer. Hepatology. 2017;65(4):1369–1383.
  • Amaral RF, Geraldo LHM, Einicker-Lamas M, et al. Microglial lysophosphatidic acid promotes glioblastoma proliferation and migration via LPA1 receptor. J Neurochem. 2021;156(4):499–512.
  • Tang X, Benesch MGK, Brindley DN. Role of the autotaxin-lysophosphatidate axis in the development of resistance to cancer therapy. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(8):158716.
  • Sasagawa T, Okita M, Murakami J, et al. Abnormal serum lysophospholipids in multiple myeloma patients. Lipids. 1999;34(1):17–21.
  • Li QF, Wu CT, Duan HF, et al. Activation of sphingosine kinase mediates suppressive effect of interleukin-6 on human multiple myeloma cell apoptosis. Br J Haematol. 2007;138(5):632–639.
  • Harmer D, Falank C, Reagan MR. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Front Endocrinol. 2018;9:788.
  • Giuliani N, Ferretti M, Bolzoni M, et al. Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation. Leukemia. 2012;26(6):1391–1401.
  • Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 2018;19(3):175–191.
  • Tang X, Benesch MG, Brindley DN. Lipid phosphate phosphatases and their roles in mammalian physiology and pathology. J Lipid Res. 2015;56(11):2048–2060.
  • Firth J. Haematology: multiple myeloma. Clin Med. 2019;19(1):58–60.
  • Nikolova-Vlahova MK, Kamburova M, Hristova J, et al. Biclonal myeloma in renal failure. Cent Eur J Immunol. 2020;45(1):122–124.
  • Roodman GD. Pathogenesis of myeloma bone disease. Leukemia. 2009;23(3):435–441.
  • Ninou I, Magkrioti C, Aidinis V. Autotaxin in pathophysiology and pulmonary fibrosis. Front Med. 2018;5:180.
  • Banerjee S, Norman DD, Lee SC, et al. Highly potent Non-Carboxylic acid autotaxin inhibitors reduce melanoma metastasis and chemotherapeutic resistance of breast cancer stem cells. J Med Chem. 2017;60(4):1309–1324.
  • Federico L, Jeong KJ, Vellano CP, et al. Autotaxin, a lysophospholipase D with pleomorphic effects in oncogenesis and cancer progression. J Lipid Res. 2016;57(1):25–35.
  • Kawaguchi M, Okabe T, Okudaira S, et al. Identification of potent in vivo autotaxin inhibitors that bind to both hydrophobic pockets and channels in the catalytic domain. J Med Chem. 2020;63(6):3188–3204.
  • Tigyi GJ, Yue J, Norman DD, et al. Regulation of tumor cell - Microenvironment interaction by the autotaxin-lysophosphatidic acid receptor axis. Adv Biol Regul. 2019;71:183–193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.