1,036
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Novel therapeutics and targets in myelofibrosis

, &
Pages 1020-1033 | Received 10 Oct 2021, Accepted 15 Nov 2021, Published online: 02 Dec 2021

References

  • Tefferi A. Primary myelofibrosis: 2019 update on diagnosis, risk-stratification and management. Am J Hematol. 2018;93(12):1551–1560.
  • O'Sullivan JM, Harrison CN. Myelofibrosis: clinicopathologic features, prognosis, and management. Clin Adv Hematol Oncol. 2018;16(2):121–131.
  • Vallapureddy RR, Mudireddy M, Penna D, et al. Leukemic transformation among 1306 patients with primary myelofibrosis: risk factors and development of a predictive model. Blood Cancer J. 2019;9(2):1201.
  • Tefferi A, Guglielmelli P, Larson DR, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124(16):2507–2513.
  • Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472–1477.
  • da Costa Reis Monte-Mór B, Plo I, da Cunha AF, et al. Constitutive JunB expression, associated with the JAK2 V617F mutation, stimulates proliferation of the erythroid lineage. Leukemia. 2009;23(1):144–152.
  • Walz C, Crowley BJ, Hudon HE, et al. Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem. 2006;281(26):18177–18183.
  • Wernig G, Kharas MG, Okabe R, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008;13(4):311–320.
  • Martí-Carvajal AJ, Anand V, Solà I. Janus kinase-1 and janus kinase-2 inhibitors for treating myelofibrosis. Cochrane Database Syst Rev. 2015;(4):CD010298. https://doi.org/https://doi.org/10.1002/14651858.cd010298.pub2
  • Vannucchi AM, Kantarjian HM, Kiladjian JJ, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of Ruxolitinib for the treatment of myelofibrosis. Haematologica. 2015;100(9):1139–1145.
  • Harrison C, Kiladijan J-J, Verstovsek S. Overall and progression-free survival in patients treated with fedratinib as first-line myelofibrosis (MF) therapy and after prior Ruxolitinib (Rux): results from the JAKARTA and JAKARTA2 trials. EHA Library. 2021;324611:S203.
  • Claire N, Harrison RAM, Jamieson C, et al. Case series of potential Wernicke's encephalopathy in patients treated with fedratinib. Blood. 2017;130:4197.
  • Kuykendall AT, Shah S, Talati C, et al. Between a Rux and a hard place: evaluating salvage treatment and outcomes in myelofibrosis after Ruxolitinib discontinuation. Ann Hematol. 2018;97(3):435–441.
  • Mylonas E, Yoshida K, Frick M, et al. Single-cell analysis based dissection of clonality in myelofibrosis. Nat Commun. 2020;11(1):7301.
  • Palandri F, Breccia M, Bonifacio M, et al. Life after ruxolitinib: reasons for discontinuation, impact of disease phase, and outcomes in 218 patients with myelofibrosis. Cancer. 2020;126(6):1243–1252.
  • Mascarenhas J, Mehra M, He J, et al. Patient characteristics and outcomes after ruxolitinib discontinuation in patients with myelofibrosis. J Med Econ. 2020;23(7):721–727.
  • Newberry KJ, Patel K, Masarova L, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood. 2017;130(9):1125–1131.
  • Ruxolitinib [package insert]. Wilmington (DE): Incyte Corporation; 2011.
  • Masarova L, Alhuraiji A, Bose P, et al. Significance of thrombocytopenia in patients with primary and postessential thrombocythemia/polycythemia vera myelofibrosis. Eur J Haematol. 2018;100(3):257–263.
  • Fedratinib [package insert]. Summit (NJ); Celgene Corporation; 2019.
  • Pardanani A, Harrison C, Cortes JE, et al. Safety and efficacy of Fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol. 2015;1(5):643–651.
  • Asshoff M, Petzer V, Warr MR, et al. Momelotinib inhibits ACVR1/ALK2, decreases hepcidin production, and ameliorates anemia of chronic disease in rodents. Blood. 2017;129(13):1823–1830.
  • Mesa RA, Kiladjian JJ, Catalano JV, et al. SIMPLIFY-1: a phase III randomized trial of Momelotinib versus Ruxolitinib in janus kinase inhibitor-naïve patients with myelofibrosis. J Clin Oncol. 2017;35(34):3844–3850.
  • Harrison CN, Vannucchi AM, Platzbecker U, et al. Momelotinib versus best available therapy in patients with myelofibrosis previously treated with Ruxolitinib (SIMPLIFY 2): a randomised, open-label, phase 3 trial. Lancet Haematol. 2018;5(2):e73–e81.
  • Pardanani A, Laborde RR, Lasho TL, et al. Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia. 2013;27(6):1322–1327.
  • Verstovsek S, Egyed M, Lech-Marańda E, et al. Robust overall survival and sustained efficacy outcomes during long term exposure to Momelotinib in JAK inhibitor naïve and previously JAK inhibitor treated intermediate/high risk myelofibrosis patients. Blood. 2020;136(Supplement 1):51–52.
  • Cervantes F, Isola IM, Alvarez-Larrán A, et al. Danazol therapy for the anemia of myelofibrosis: assessment of efficacy with current criteria of response and long-term results. Ann Hematol. 2015;94(11):1791–1796.
  • Singer JW, Al-Fayoumi S, Ma H, et al. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive janus kinase 2 inhibitor. JEP. 2016;8:11–19.
  • Komrokji RS, Seymour JF, Roberts AW, et al. Results of a phase 2 study of Pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. Blood. 2015;125(17):2649–2655.
  • Mesa RA, Vannucchi AM, Mead A, et al. Pacritinib versus best available therapy for the treatment of myelofibrosis irrespective of baseline cytopenias (PERSIST-1): an international, randomised, phase 3 trial. Lancet Haematol. 2017;4(5):e225–e236.
  • Mascarenhas J, Hoffman R, Talpaz M, et al. Pacritinib vs best available therapy, including Ruxolitinib, in patients with myelofibrosis: a randomized clinical trial. JAMA Oncol. 2018;4(5):652–659.
  • Tremblay D, Mesa R, Scott B, et al. Pacritinib demonstrates spleen volume reduction in patients with myelofibrosis independent of JAK2V617F allele burden. Blood Adv. 2020;4(23):5929–5935.
  • Gerds AT, Savona MR, Scott BL, et al. Determining the recommended dose of Pacritinib: results from the PAC203 dose-finding trial in advanced myelofibrosis. Blood Adv. 2020;4(22):5825–5835.
  • Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–1073.
  • Winter GE, Mayer A, Buckley DL, et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol Cell. 2017;67(1):5–18.e19.
  • Gallagher SJ, Mijatov B, Gunatilake D, et al. Control of NF-kB activity in human melanoma by bromodomain and extra-terminal protein inhibitor I-BET151. Pigment Cell Melanoma Res. 2014;27(6):1126–1137.
  • Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468(7327):1119–1123.
  • Kleppe M, Koche R, Zou L, et al. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms. Cancer Cell. 2018;33(4):785–787.
  • Talpaz M, Rampal RK, Verstovsek S. CPI-0610, a bromodomain and extraterminal domain protein (BET) inhibitor, as monotherapy in advanced myelofibrosis patients refractory/intolerant to JAK inhibitor: update from phase 2 MANIFEST study. Presented at American Society of Hematology Annual Conference; 2020. Abstract 2163. Session 634.
  • Mascarenhas J, Harrison C, Patriarca A. CPI-0610, a bromodomain and extraterminal domain protein (BET) inhibitor, in combination with Ruxolitinib, in JAK-inhibitor-naïve myelofibrosis patients: update of MANIFEST phase 2 study. Presented at American Society of Hematology Annual Meeting; 2020. Abstract 55. Session 634.
  • Keller P, Cui J, Mertz J. BET inhibitor pelabresib decreases inflammatory cytokines, improves bone marrow fibrosis and function, and demonstrates clinical response irrespective of mutation status in myelofibrosis patients. EHA Library. 2021;324803:EP1080.
  • Ciceri P, Müller S, O'Mahony A, et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat Chem Biol. 2014;10(4):305–312.
  • Kleppe M, Koche R, Zou L, et al. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms. Cancer Cell. 2018;33(1):29–43.e7.
  • Brunelle JK, Letai A. Control of mitochondrial apoptosis by the bcl-2 family. J Cell Sci. 2009;122(Pt 4):437–441.
  • Venetoclax (venclexta) [package insert]. Chicago (IL): Abbvie Inc.; 2016.
  • Tognon R, Gasparotto EP, Neves RP, et al. Deregulation of apoptosis-related genes is associated with PRV1 overexpression and JAK2 V617F allele burden in essential thrombocythemia and myelofibrosis. J Hematol Oncol. 2012;5:2.
  • Pemmaraju N, Garcia JS, Potluri J, et al. The addition of navitoclax to Ruxolitinib demonstrates efficacy within different high-risk populations in patients with relapsed/refractory myelofibrosis. Blood. 2020;136(Supplement 1):49–50.
  • Nakatake M, Monte-Mor B, Debili N, et al. JAK2(V617F) negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms. Oncogene. 2012;31(10):1323–1333.
  • Honda R, Yasuda H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene. 2000;19(11):1473–1476.
  • Fang S, Jensen JP, Ludwig RL, et al. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000;275(12):8945–8951.
  • Lu M, Wang X, Li Y, et al. Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-α 2a specifically targets JAK2V617F-positive polycythemia vera cells. Blood. 2012;120(15):3098–3105.
  • Mascarenhas J, Lu M, Kosiorek H, et al. Oral idasanutlin in patients with polycythemia vera. Blood. 2019;134(6):525–533.
  • Mascarenhas J, Higgins B, Anders D. Safety and efficacy of Idasanutlin in patients with hydroxyurea-resistant/intolerant polycythemia vera: results of an international phase II study. American Society of Hematology National Conference; 2020. Oral Presentation, session 634. Abstract 479.
  • Al-Ali HK, Delgado RG, Lange A. A first-in-class, murine double minute 2 inhibitor (MDM2i) for myelofibrosis relapsed or refractory to janus associated kinase inhibitor treatment. European Hematology Association Annual Meeting; 2020, abstract S215.
  • Owens TW, Gilmore AP, Streuli CH, et al. Inhibitor of apoptosis proteins: promising targets for cancer therapy. J Carcinog Mutagen. 2013; May 27;Suppl 14:S14–004.
  • Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102(1):33–42.
  • Craver BM, Nguyen TK, Nguyen J, et al. The SMAC mimetic LCL-161 selectively targets JAK2V617F mutant cells. Exp Hematol Oncol. 2020;9:1.
  • Pemmaraju N, Carter BZ, Bose P, et al. Final results of a phase 2 clinical trial of LCL161, an oral SMAC mimetic for patients with myelofibrosis. Blood Adv. 2021;5(16):3163–3173.
  • Bartalucci N, Guglielmelli P, Vannucchi AM. Rationale for targeting the PI3K/Akt/mTOR pathway in myeloproliferative neoplasms. Clin Lymphoma Myeloma Leuk. 2013;13(Suppl 2):S307–S309.
  • Guglielmelli P, Barosi G, Rambaldi A, et al. Safety and efficacy of Everolimus, a mTOR inhibitor, as single agent in a phase 1/2 study in patients with myelofibrosis. Blood. 2011;118(8):2069–2076.
  • Durrant ST, Nagler A, Guglielmelli P, et al. Results from HARMONY: an open-label, multicenter, 2-arm, phase 1b, dose-finding study assessing the safety and efficacy of the oral combination of ruxolitinib and buparlisib in patients with myelofibrosis. Haematologica. 2019;104(12):e551–e554.
  • Yacoub A, Wang ES, Rampal RR. Addition of parsaclisib (INCB050465), a PI3Kδ inhibitor, in patients with suboptimal response to Ruxolitinib: a phase 2 study in patients with myelofibrosis. Presented at: 2021 AACR Annual Meeting 2021; April 10–15; 2021. Virtual. Abstract CT162.
  • Stark AK, Sriskantharajah S, Hessel EM, et al. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr Opin Pharmacol. 2015;23:82–91.
  • Werner JA, Ishida K, Wisler J, et al. Phosphatidylinositol 3-kinase δ inhibitor-induced immunomodulation and secondary opportunistic infection in the cynomolgus monkey (Macaca fascicularis). Toxicol Pathol. 2020;48(8):949–964.
  • Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. Biochemistry. 2010;75(13):1563–1583.
  • Shippen-Lentz D, Blackburn EH. Functional evidence for an RNA template in telomerase. Science. 1990;247(4942):546–552.
  • Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345(6274):458–460.
  • Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–2015.
  • Wang X, Hu CS, Petersen B, et al. Imetelstat, a telomerase inhibitor, is capable of depleting myelofibrosis stem and progenitor cells. Blood Adv. 2018;2(18):2378–2388.
  • Tefferi A, Lasho TL, Begna KH, et al. A pilot study of the telomerase inhibitor Imetelstat for myelofibrosis. N Engl J Med. 2015;373(10):908–919.
  • Geron announces removal of full clinical hold on Imetelstat IND [cited 2014 Nov 3]. Available from: https://ir.geron.com/investors/press-releases/press-release-details/2014/Geron-Announces-Removal-of-Full-Clinical-Hold-on-Imetelstat-IND/default.aspx
  • Mascarenhas J, Komrokji R, Cavo M. Telomerase activity, telomere length and hTERT expression correlate with clinical outcomes in higher-risk myelofibrosis (MF) relapsed/refractory (R/R) to janus kinase inhibitor treated with Imetelstat. Abstract 347. Session 634. Presented at American Society of Hematology National Conference; 2020.
  • Mascarenhas J, Komrokji RS, Palandri F, et al. Randomized, single-blind, multicenter phase II study of two doses of Imetelstat in relapsed or refractory myelofibrosis. J Clin Oncol. 2021;39(26):2881–2892.
  • Castaño AP, Lin SL, Surowy T, et al. Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte-macrophage regulation in vivo. Sci Transl Med. 2009;1(5):5ra13.
  • Murray LA, Rosada R, Moreira AP, et al. Serum amyloid P therapeutically attenuates murine bleomycin-induced pulmonary fibrosis via its effects on macrophages. PLOS One. 2010;5(3):e9683.
  • van den Blink B, Dillingh MR, Ginns LC, et al. Recombinant human pentraxin-2 therapy in patients with idiopathic pulmonary fibrosis: safety, pharmacokinetics and exploratory efficacy. Eur Respir J. 2016;47(3):889–897.
  • Pilling D, Roife D, Wang M, et al. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol. 2007;179(6):4035–4044.
  • Verstovsek S, Hasserjian RP, Pozdnyakova O, et al. PRM-151 in myelofibrosis: efficacy and safety in an open label extension study. Blood. 2018;132(Supplement 1):686.
  • Verstovsek S, Talpaz M, Wadleigh M, et al. A randomized, double blind phase 2 study of 3 different doses of PRN-151 in patients with myelofibrosis who were previously treated with or ineligible for Ruxolitinib. HemaSphere. 2019;3(S1):367.
  • Sprüssel A, Schulte JH, Weber S, et al. Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia. 2012;26(9):2039–2051.
  • Niebel D, Kirfel J, Janzen V, et al. Lysine-specific demethylase 1 (LSD1) in hematopoietic and lymphoid neoplasms. Blood. 2014;124(1):151–152.
  • Harris WJ, Huang X, Lynch JT, et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell. 2012;21(4):473–487.
  • Jutzi JS, Kleppe M, Dias J, et al. LSD1 inhibition prolongs survival in mouse models of MPN by selectively targeting the disease clone. Hemasphere. 2018;2(3):e54.
  • Yacoub A, Pettit KM, Bradley TJ. A phase 2 study of the LSD1 inhibitor IMG7289 (bomedemstat) for the treatment of advanced myelofibrosis. Presented at American Society of Hematology National Conference; December 2020. Session 634. Abstract 51.
  • Wang JC, Chen C, Kundra A, et al. Programmed cell death receptor (PD-1) ligand (PD-L1) expression in Philadelphia chromosome-negative myeloproliferative neoplasms. Leuk Res. 2019;79:52–59.
  • Cimen Bozkus C, Roudko V, Finnigan JP, et al. Immune checkpoint blockade enhances shared neoantigen-induced T-cell immunity directed against mutated calreticulin in myeloproliferative neoplasms. Cancer Discov. 2019;9(9):1192–1207.
  • Abou Dalle I, Kantarjian H, Daver N, et al. Phase II study of single-agent nivolumab in patients with myelofibrosis. Ann Hematol. 2021;100(12):2957–2960.
  • Hobbs GS, Bozkus CC, Wadleigh M. Results of a phase II study of PD-1 inhibition in advanced myeloproliferative neoplasms. Abstract 2162. Session 634. Presented at American Society of Hematology National Conference; 2020.
  • Handlos Grauslund J, Holmström MO, Jørgensen NG, et al. Therapeutic cancer vaccination with a peptide derived from the Calreticulin exon 9 mutations induces strong cellular immune responses in patients with CALR-mutant chronic myeloproliferative neoplasms. Front Oncol. 2021;11:637420.
  • Kiladjian JJ, Chomienne C, Fenaux P. Interferon-alpha therapy in BCR-ABL-negative myeloproliferative neoplasms. Leukemia. 2008;22(11):1990–1998.
  • Gisslinger H, Klade C, Georgiev P, et al. Ropeginterferon Alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020;7(3):e196–e208.
  • Mosca M, Hermange G, Tisserand A, et al. Inferring the dynamic of mutated hematopoietic stem and progenitor cells induced by IFNa in myeloproliferative neoplasms. Blood. 2021 Aug 18. Epub ahead of print. PMID: 34407546.
  • Sørensen AL, Mikkelsen SU, Knudsen TA, et al. Ruxolitinib and interferon-α2 combination therapy for patients with polycythemia vera or myelofibrosis: a phase II study. Haematologica. 2020;105(9):2262–2272.
  • Pemmaraju N, Gupta V, Ali H, et al. Results from a phase 1/2 clinical trial of Tagraxofusp (SL-401) in patients with intermediate, or high risk, relapsed/refractory myelofibrosis. Blood. 2019;134(Supplement_1):558.
  • Arranz L, Arriero MDM, Villatoro A. Interleukin-1β as emerging therapeutic target in hematological malignancies and potentially in their complications. Blood Rev. 2017;31(5):306–317.
  • Emadi S, Clay D, Desterke C, et al. IL-8 and its CXCR1 and CXCR2 receptors participate in the control of megakaryocytic proliferation, differentiation, and ploidy in myeloid metaplasia with myelofibrosis. Blood. 2005;105(2):464–473.
  • Mascarenhas J, Kosiorek HE, Varricchio L. Rationale for and results of a phase I study of the TGF-β 1/3 inhibitor AVID200 in subjects with myelofibrosis: MPN-RC 118 trial. Presented at American Society of Hematology Conference; 2020. Session 634. Abstract 1254.
  • Gangat N, Stein BL, Marinaccio C, et al. Alisertib (MLN8237), an oral selective inhibitor of Aurora kinase a, has clinical activity and restores GATA1 expression in patients with myelofibrosis. Blood. 2018;132(supplement 1):688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.