299
Views
0
CrossRef citations to date
0
Altmetric
Articles

Role of the splenic microenvironment in chronic lymphocytic leukemia development in Eµ-TCL1 transgenic mice

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon & show all
Pages 1810-1822 | Received 30 Sep 2021, Accepted 16 Feb 2022, Published online: 08 Mar 2022

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA A Cancer J Clin. 2021;71(1):7–33.
  • Gururajan M, Jennings CD, Bondada S. Cutting edge: constitutive B cell receptor signaling is critical for basal growth of B lymphoma. J Immunol. 2006;176(10):5715–5719.
  • Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005;352(8):804–815.
  • Bichi R, Shinton SA, Martin ES, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted  < em > TCL1</em > expression. Proc Natl Acad Sci USA. 2002;99(10):6955–6960.
  • Svanberg R, Janum S, Patten PEM, et al. Targeting the tumor microenvironment in chronic lymphocytic leukemia. Haematol. 2021;106(9):2312–2324.
  • Panayiotidis P, Jones D, Ganeshaguru K, et al. Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol. 1996;92(1):97–103.
  • Burger JA, Tsukada N, Burger M, et al. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood. 2000;96(8):2655–2663.
  • Tangye SG, Weston KM, Raison RL. Cytokines and cross-linking of sIgM augment PMA-induced activation of human leukaemic CD5+ B cells. Immunol Cell Biol. 1997;75(6):561–567.
  • Mongini PKA, Gupta R, Boyle E, et al. TLR-9 and IL-15 synergy promotes the in vitro clonal expansion of chronic lymphocytic leukemia B cells. J. Immunol. 2015;195(3):901–923.
  • Burger JA, Gribben JG. The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies. Semin Cancer Biol. 2014;24:71–81.
  • Lezina L, Spriggs RV, Beck D, et al. CD40L/IL-4–stimulated CLL demonstrates variation in translational regulation of DNA damage response genes including ATM. Blood Adv. 2018;2(15):1869–1881.
  • Burgess M, Cheung C, Chambers L, et al. CCL2 and CXCL2 enhance survival of primary chronic lymphocytic leukemia cells in vitro. Leuk Lymphoma. 2012;53(10):1988–1998.
  • Lu D, Zhao Y, Tawatao R, et al. Activation of the wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2004;101(9):3118–3123.
  • Alhakeem SS, McKenna MK, Oben KZ, et al. Chronic lymphocytic leukemia–derived IL-10 suppresses antitumor immunity. J Immunol. 2018;200(12):4180–4189.
  • Rivas JR, Liu Y, Alhakeem SS, et al. Interleukin-10 suppression enhances T-cell antitumor immunity and responses to checkpoint blockade in chronic lymphocytic leukemia. Leukemia. 2021;35(11):3188–3200.
  • Cusack JC, Seymour JF, Lerner S, et al. Role of splenectomy in chronic lymphocytic leukemia. J Am College Surg. 1997;185(3):237–243.
  • Seymour JF, Cusack JD, Lerner SA, et al. Case/control study of the role of splenectomy in chronic lymphocytic leukemia. J Clin Oncol. 1997;15(1):52–60.
  • Sindhava V, Woodman ME, Stevenson B, et al. Interleukin-10 mediated autoregulation of murine B-1 B-cells and its role in Borrelia hermsii infection. PLoS One. 2010;5(7):e11445.
  • Widhopf GF, Cui B, Ghia EM, et al. ROR1 can interact with TCL1 and enhance leukemogenesis in Eµ-TCL1 transgenic mice. Proc Natl Acad Sci USA. 2014;111(2):793–798.
  • Mani R, Mao Y, Frissora FW, et al. Tumor antigen ROR1 targeted drug delivery mediated selective leukemic but not normal B-cell cytotoxicity in chronic lymphocytic leukemia. Leukemia. 2015;29(2):346–355.
  • Lim HK, O'Neill HC. Identification of stromal cells in spleen which support myelopoiesis. Front Cell Dev Biol. 2019;7(1):1.
  • Halfon S, Abramov N, Grinblat B, et al. Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev. 2011;20(1):53–66.
  • Cancro M, Scholz J, Sindhava V. Roles for BLyS family members in meeting the distinct homeostatic demands of innate and adaptive B cells [review]. Front Immunol. 2013;4(37):37.
  • Simonetti G, Bertilaccio MTS, Ghia P, et al. Mouse models in the study of chronic lymphocytic leukemia pathogenesis and therapy. Blood. 2014;124(7):1010–1019.
  • Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in chronic lymphocytic leukemia: implications for disease pathogenesis and treatment. Biochim Biophys Acta Mol Cell Res. 2016;1863(3):401–413.
  • Parente-Ribes A, Skånland SS, Bürgler S, et al. Spleen tyrosine kinase inhibitors reduce CD40L-induced proliferation of chronic lymphocytic leukemia cells but not normal B cells. Haematologica. 2016;101(2):e59–e62.
  • Heinig K, Gatjen M, Grau M, et al. Access to follicular dendritic cells is a pivotal step in murine chronic lymphocytic leukemia B-cell activation and proliferation. Cancer Discov. 2014;4(12):1448–1465.
  • Gutjahr JC, Szenes E, Tschech L, et al. Microenvironment-induced CD44v6 promotes early disease progression in chronic lymphocytic leukemia. Blood. 2018;131(12):1337–1349.
  • Fedorchenko O, Stiefelhagen M, Peer-Zada AA, et al. CD44 regulates the apoptotic response and promotes disease development in chronic lymphocytic leukemia. Blood. 2013;121(20):4126–4136.
  • Sierra-Filardi E, Nieto C, Domínguez-Soto Á, et al. CCL2 shapes macrophage polarization by GM-CSF and M-CSF: identification of CCL2/CCR2-dependent gene expression profile. J Immunol. 2014;192(8):3858–3867.
  • Emami KH, Nguyen C, Ma H, et al. A small molecule inhibitor of β-catenin/cyclic AMP response element-binding protein transcription. Proc Natl Acad Sci USA. 2004;101(34):12682–12687.
  • Bernard P, Fleming A, Lacombe A, et al. Wnt4 inhibits β-catenin/TCF signalling by redirecting β-catenin to the cell membrane. Biol Cell. 2008;100(3):167–177.
  • Roessner PM, Llao Cid L, Lupar E, et al. EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4(+) T cells in chronic lymphocytic leukemia. Leukemia. 2021;35(8):2311–2324.
  • Ma S, Shi Y, Pang Y, et al. Notch1-induced T cell leukemia can be potentiated by microenvironmental cues in the spleen. J Hematol Oncol. 2014;7(1):71.
  • Newman T. Spleen: anatomy, function, and disease. Medical News Today. 2018. https://www.medicalnewstoday.com/articles/320698#diseases
  • Stewart IB, McKenzie DC. The human spleen during physiological stress. Sports Med. 2002; 32(6):361–369.
  • Bertilaccio MTS, Simonetti G, Dagklis A, et al. Lack of TIR8/SIGIRR triggers progression of chronic lymphocytic leukemia in mouse models. Blood. 2011;118(3):660–669.
  • Sanchez-Aguilera A, Rattmann I, Drew DZ, et al. Involvement of RhoH GTPase in the development of B-cell chronic lymphocytic leukemia. Leukemia. 2010;24(1):97–104.
  • Reinart N, Nguyen P-H, Boucas J, et al. Delayed development of chronic lymphocytic leukemia in the absence of macrophage migration inhibitory factor. Blood. 2013;121(5):812–821.
  • Wu Q-L, Zierold C, Ranheim EA. Dysregulation of frizzled 6 is a critical component of B-cell leukemogenesis in a mouse model of chronic lymphocytic leukemia. Blood. 2009;113(13):3031–3039.
  • Tang C-HA, Ranatunga S, Kriss CL, et al. Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J Clin Invest. 2014;124(6):2585–2598.
  • Holler C, Piñón JD, Denk U, et al. PKCbeta is essential for the development of chronic lymphocytic leukemia in the TCL1 transgenic mouse model: validation of PKCbeta as a therapeutic target in chronic lymphocytic leukemia. Blood. 2009;113(12):2791–2794.
  • Woyach JA, Bojnik E, Ruppert AS, et al. Bruton’s tyrosine kinase (BTK) function is important to the development and expansion of chronic lymphocytic leukemia (CLL). Blood. 2014;123(8):1207–1213.
  • Enzler T, Kater AP, Zhang W, et al. Chronic lymphocytic leukemia of Emu-TCL1 transgenic mice undergoes rapid cell turnover that can be offset by extrinsic CD257 to accelerate disease progression. Blood. 2009;114(20):4469–4476.
  • Lascano V, Guadagnoli M, Schot JG, et al. Chronic lymphocytic leukemia disease progression is accelerated by APRIL-TACI interaction in the TCL1 transgenic mouse model. Blood. 2013;122(24):3960–3963.
  • Chen S-S, Claus R, Lucas DM, et al. Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL. Blood. 2011;117(3):862–871.
  • Liu J, Chen G, Feng L, et al. Loss of p53 and altered miR15-a/16-1→MCL-1 pathway in CLL: insights from TCL1-Tg:p53−/− mouse model and primary human leukemia cells. Leukemia. 2014;28(1):118–128.
  • Scielzo C, Bertilaccio MTS, Simonetti G, et al. HS1 has a Central role in the trafficking and homing of leukemic B cells. Blood. 2010;116(18):3537–3546.
  • Nganga VK, Palmer VL, Naushad H, et al. Accelerated progression of chronic lymphocytic leukemia in Eμ-TCL1 mice expressing catalytically inactive RAG1. Blood. 2013;121(19):3855–3866.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.