154
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Brain-derived neurotrophic factor: focus on the pathogenesis of multiple myeloma and the development of treatment-induced peripheral neuropathy

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 3044-3051 | Received 12 Jul 2022, Accepted 01 Aug 2022, Published online: 23 Aug 2022

References

  • Suska A, Jurczyszyn A. Epidemiology and etiopathogenesis of multiple myeloma and monoclonal gammapathy of undetermined significance. Postepy Hig Med Dosw. 2018;72:953–965.
  • Jurczyszyn A, Charliński G, Suska A, et al. The importance of cytogenetic and molecular aberrations in multiple myeloma. Acta Haematol Pol. 2021;52:361–370.
  • Rajkumar SV, Kumar S. Multiple myeloma: diagnosis and treatment. Mayo Clin Proc. 2016;91(1):101–119.
  • Fitzgerald E, Kiely P, Leary HO. Intracranial involvement in multiple myeloma presenting as a cranial nerve palsy. J Hematol. 2019;8(1):29–33.
  • Olechnowicz SWZ, Weivoda MM, Lwin ST, et al. Multiple myeloma increases nerve growth factor and other pain-related markers through interactions with the bone microenvironment. Sci Rep. 2019;9(1):14189.
  • Łuczkowska K, Rogińska D, Kulig P, et al. Bortezomib-induced epigenetic alterations in nerve cells: focus on the mechanisms contributing to the peripheral neuropathy development. Int J Mol Sci. 2022;23(5):2431.
  • Łuczkowska K, Machaliński B. Peripheral neuropathy in patients with multiple myeloma: molecular effects of bortezomib. Acta Haematol Pol. 2021;52:375–381.
  • Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic factor BDNF physiological functions and therapeutic potential in depression neurodegeneration and brain cancer. Int J Mol Sci. 2020;21(20):7777.
  • Szudy‐Szczyrek A, Mlak R, Bury‐Kamińska M, et al. Serum brain-derived neurotrophic factor (BDNF) concentration predicts polyneuropathy and overall survival in multiple myeloma patients. Br J Haematol. 2020;191(1):77–89.
  • Azoulay D, Horowitz NA. Brain-derived neurotrophic factor in hematological malignancies: from detrimental to potentially beneficial. Blood Rev. 2022;51:100871.
  • Tajbakhsh A, Mokhtari-Zaer A, Rezaee M, et al. Therapeutic potentials of BDNF/TrkB in breast cancer; current status and perspectives. J Cell Biochem. 2017;118(9):2502–2515.
  • Wang Z, Wang S, Liu Y, et al. Serum levels of BDNF in patients with adenoma and colorectal cancer. Dis Markers. 2021;2021:8867368.
  • Pius-Sadowska E, Machaliński B. Role of neurotrophins/neurotrophin receptors axis in regulation of neuronal homeostasis. Postepy Biol Komorki. 2014;2:285–314.
  • Machaliński B, Lażewski-Banaszak P, Dąbkowska E, et al. The role of neurotrophic factors in regeneration of the nervous system. Neurol Neurochir Pol. 2012;46(6):579–590.
  • Adachi N, Numakawa T, Richards M, et al. New insight in expression transport and secretion of brain-derived neurotrophic factor: implications in brain-related diseases. World J Biol Chem. 2014;5(4):409–428.
  • Zheng F, Zhou X, Luo Y, et al. Regulation of brain-derived neurotrophic factor exon IV transcription through calcium responsive elements in cortical neurons. PLOS One. 2011;6(12):e28441.
  • Tao X, West AE, Chen WG, et al. A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF. Neuron. 2002;33(3):383–395.
  • Zheng F, Zhou X, Moon C, et al. Regulation of brain-derived neurotrophic factor expression in neurons. Int J Physiol Pathophysiol Pharmacol. 2012;4(4):188–200.
  • Koyama Y, Tsujikawa K, Matsuda T, et al. Endothelin increases expression of exon III- and exon IV-containing brain-derived neurotrophic factor transcripts in cultured astrocytes and rat brain. J Neurosci Res. 2005;80(6):809–816.
  • Nair B, Wong-Riley MTT. Transcriptional regulation of brain-derived neurotrophic factor coding exon IX. J Biol Chem. 2016;291(43):22583–22593.
  • Vargas MR, Pehar M, Cassina P, et al. Stimulation of nerve growth factor expression in astrocytes by peroxynitrite. In Vivo. 2004;18(3):269–274.
  • Mousavi K, Jasmin BJ. BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J Neurosci. 2006;26(21):5739–5749.
  • Grasman JM, Kaplan DL. Human endothelial cells secrete neurotropic factors to direct axonal growth of peripheral nerves. Sci Rep. 2017;7(1):4092.
  • Nakahashi T, Fujimura H, Altar CA, et al. Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett. 2000;470(2):113–117.
  • Nockher WA, Renz H. Neurotrophins in clinical diagnostics: pathophysiology and laboratory investigation. Clin Chim Acta. 2005;352(1–2):49–74.
  • Lessmann V, Brigadski T. Mechanisms locations and kinetics of synaptic BDNF secretion: an update. Neurosci Res. 2009;65(1):11–22.
  • Dechant G, Neumann H. Neurotrophins. Adv Exp Med Biol. 2002;513:303–334.
  • Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.
  • Hoshi H, McKeehan WL. Production of an auto-stimulatory growth factor by human hepatoma cells abrogates requirement for a brain-derived factor. In Vitro Cell Dev Biol. 1985;21(2):125–128.
  • Matsumoto K, Wada RK, Yamashiro JM, et al. Expression of brain-derived neurotrophic factor and p145TrkB affects survival differentiation and invasiveness of human neuroblastoma cells. Cancer Res. 1995;55(8):1798–1806.
  • Marchetti D, McCutcheon I, Ross M, et al. Inverse expression of neurotrophins and neurotrophin receptors at the invasion front of human-melanoma brain metastases. Int J Oncol. 1995;7(1):87–94.
  • Yin B, Ma ZY, Zhou ZW, et al. The TrkB+ cancer stem cells contribute to post-chemotherapy recurrence of triple-negative breast cancers in an orthotopic mouse model. Oncogene. 2015;34(6):761–770.
  • Zhang S, Hui LP, Li CY, et al. More expression of BDNF associates with lung squamous cell carcinoma and is critical to the proliferation and invasion of lung cancer cells. BMC Cancer. 2016;16:171.
  • Radin DP, Patel P. BDNF: an oncogene or tumor suppressor? Anticancer Res. 2017;37(8):3983–3990.
  • Pearse RN, Swendeman SL, Li Y, et al. A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood. 2005;105(11):4429–4436.
  • Sun CY, Hu Y, Huang J, et al. Brain-derived neurotrophic factor induces proliferation migration and VEGF secretion in human multiple myeloma cells via activation of MEK-ERK and PI3K/AKT signaling. Tumour Biol. 2010;31(2):121–128.
  • Zhang L, Hu Y, Sun CY, et al. Lentiviral shRNA silencing of BDNF inhibits in vivo multiple myeloma growth and angiogenesis via down-regulated stroma-derived VEGF expression in the bone marrow milieu. Cancer Sci. 2010;101(5):1117–1124.
  • Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18.
  • Hu Y, Sun CY, Wang HF, et al. Brain-derived neurotrophic factor promotes growth and migration of multiple myeloma cells. Cancer Genet Cytogenet. 2006;169(1):12–20.
  • Chu M, Fan Y, Wu L, et al. Knockdown of lncRNA BDNF-AS inhibited the progression of multiple myeloma by targeting the miR-125a/b-5p-BCL2 axis. Immun Ageing. 2022;19(1):3.
  • Chu ZB, Sun CY, Yang D, et al. Role of brain-derived neurotrophic factor in bone marrow angiogenesis in multiple myeloma. J Huazhong Univ Sci Technolog Med Sci. 2013;33(4):485–490.
  • Hu Y, Wang YD, Guo T, et al. Identification of brain-derived neurotrophic factor as a novel angiogenic protein in multiple myeloma. Cancer Genet Cytogenet. 2007;178(1):1–10.
  • Wang YD, Hu Y, Huang J, et al. Antitumor effect of anti-brain derived neurotrophic factor monoclonal antibody in human multiple myeloma xenograft animal model. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2008;16(5):1069–1072.
  • Ai LS, Sun CY, Zhang L, et al. Inhibition of BDNF in multiple myeloma blocks osteoclastogenesis via down-regulated stroma-derived RANKL expression both in vitro and in vivo. PLOS One. 2012;7(10):e46287.
  • Sun CY, Chu ZB, She XM, et al. Brain-derived neurotrophic factor is a potential osteoclast stimulating factor in multiple myeloma. Int J Cancer. 2012;130(4):827–836.
  • Mohty B, El-Cheikh J, Yakoub-Agha I, et al. Peripheral neuropathy and new treatments for multiple myeloma: background and practical recommendations. Haematologica. 2010;95(2):311–319.
  • Jagannath S, Barlogie B, Berenson J, et al. A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol. 2004;127(2):165–172.
  • Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed refractory myeloma. N Engl J Med. 2003;348(26):2609–2617.
  • Mileshkin L, Stark R, Day B, et al. Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J Clin Oncol. 2006;24(27):4507–4514.
  • Łuczkowska K, Taryma-Leśniak O, Bińkowski J, et al. Long-term treatment with bortezomib induces specific methylation changes in differentiated neuronal cells. Cancers. 2022;14(14):3402.
  • Sikandar S, Minett MS, Millet Q, et al. Brain-derived neurotrophic factor derived from sensory neurons plays a critical role in chronic pain. Brain. 2018;141(4):1028–1039.
  • Palanca A, Casafont I, Berciano MT, et al. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell Mol Life Sci. 2014;71(10):1961–1975.
  • Liu Y, Liu X, Zhang T, et al. Cytoprotective effects of proteasome beta5 subunit overexpression in lens epithelial cells. Mol Vis. 2007;13:31–38.
  • Azoulay D, Lavie D, Horowitz N, et al. Bortezomib-induced peripheral neuropathy is related to altered levels of brain-derived neurotrophic factor in the peripheral blood of patients with multiple myeloma. Br J Haematol. 2014;164(3):454–456.
  • Azoulay D, Giryes S, Nasser R, et al. Prediction of chemotherapy-Induced peripheral neuropathy in patients with lymphoma and myeloma: the roles of brain-derived neurotropic factor protein levels and a gene polymorphism. J Clin Neurol. 2019;15(4):511–516.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.