306
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Loss of TET2 with reduced genomic 5-hmC is associated with adverse-risk AML

ORCID Icon, , , ORCID Icon, , , ORCID Icon, , & show all
Pages 3426-3432 | Received 04 May 2022, Accepted 08 Sep 2022, Published online: 27 Sep 2022

References

  • Ding L, Ley TJ, Larson DE, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506–510.
  • Ley TJ, Miller C, Ding L, et al.; Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–2074.,
  • Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–2221.
  • Li S, Chen X, Wang J, et al. Somatic mutations drive specific, but reversible epigenetic heterogeneity states in AML. Cancer Discov. 2020;10(12):1934–1949.
  • Goldman SL, Hassan C, Khunte M, et al. Epigenetic modifications in acute myeloid leukemia: prognosis. Front Genet. 2019;10:133.
  • Weissmann S, Alpermann T, Grossmann V, et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. 2012;26(5):934–942.
  • Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–935.
  • Seethy A, Pethusamy K, Chattopadhyay I, et al. TETology: epigenetic mastermind in action. Appl Biochem Biotechnol. 2021;193(6):1701–1726.
  • Solary E, Bernard OA, Tefferi A, et al. The Ten-Eleven translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases. Leukemia. 2014;28(3):485–496.
  • Potter N, Miraki-Moud F, Ermini L, et al. Single cell analysis of clonal architecture in acute myeloid leukaemia. Leukemia. 2019;33(5):1113–1123.
  • Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukemia genome. Nature. 2008;456(7218):66–72.
  • Gaidzik VI, Schlenk RF, Paschka P, et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML study group (AMLSG). Blood. 2013;121(23):4769–4777.
  • Spencer DH, Russler-Germain DA, Ketkar-Kulkarni S, et al. CpG island hypermethylation mediated by DNMT3A is a consequence of AML progression. Cell. 2017;168(5):801–816.e13.
  • Wang J, He N, Wang R, et al. Analysis of TET2 and EZH2 gene functions in chromosome instability in acute myeloid leukemia. Sci Rep. 2020;10(1):2706.
  • Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447.
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):e45.
  • Bottomly D, Long N, Schultz AR, et al. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell. 2022;40(8):850–864.e9.
  • Chou WC, Chou SC, Liu CY, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011;118(14):3803–3810.
  • Metzeler KH, Maharry K, Radmacher MD, et al. TET2 mutations improve the new european LeukemiaNet risk classification of acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol. 2011;29(10):1373–1381.
  • Feng Y, Li X, Cassady K, et al. TET2 function in hematopoietic malignancies, immune regulation, and DNA repair. Front Oncol. 2019;9:210.
  • Wang R, Gao X, Yu L. The prognostic impact of tet oncogene family member 2 mutations in patients with acute myeloid leukemia: a systematic-review and Meta-analysis. BMC Cancer. 2019;19(1):389.
  • Sato H, Wheat JC, Steidl U, et al. DNMT3A and TET2 in the Pre-Leukemic phase of hematopoietic disorders. Front Oncol. 2016;6:187.
  • Zhang TJ, Zhou JD, Yang DQ, et al. TET2 expression is a potential prognostic and predictive biomarker in cytogenetically normal acute myeloid leukemia. J Cell Physiol. 2018;233(8):5838–5846.
  • Langlois T, da Costa Reis Monte-Mor B, Lenglet G, et al. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells. Stem Cells. 2014;32(8):2084–2097.
  • Scopim-Ribeiro R, Machado-Neto JA, Campos PdM, et al. Ten-eleven-translocation 2 (TET2) is downregulated in myelodysplastic syndromes. Eur J Haematol. 2015;94(5):413–418.
  • Ko M, Huang Y, Jankowska AM, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010;468(7325):839–843.
  • Li Z, Cai X, Cai CL, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118(17):4509–4518.
  • Pronier E, Almire C, Mokrani H, et al. Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood. 2011;118(9):2551–2555.
  • Magotra M, Sakhdari A, Lee PJ, et al. Immunohistochemical loss of 5-hydroxymethylcytosine expression in acute myeloid leukaemia: relationship to somatic gene mutations affecting epigenetic pathways. Histopathology. 2016;69(6):1055–1065.
  • Yin R, Mao SQ, Zhao B, et al. Ascorbic acid enhances tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc. 2013;135(28):10396–10403.
  • Blaschke K, Ebata KT, Karimi MM, et al. Vitamin C induces tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 2013;500(7461):222–226.
  • Zhao H, Zhu H, Huang J, et al. The synergy of vitamin C with decitabine activates TET2 in leukemic cells and significantly improves overall survival in elderly patients with acute myeloid leukemia. Leuk Res. 2018;66:1–7.
  • Das AB, Smith-Díaz CC, Vissers MCM. Emerging epigenetic therapeutics for myeloid leukemia: modulating demethylase activity with ascorbate. Haematologica. 2021;106(1):14–25.
  • Smith-Díaz CC, Magon NJ, McKenzie JL, et al. Ascorbate inhibits proliferation and promotes myeloid differentiation in TP53-Mutant leukemia. Front Oncol. 2021;11:709543.
  • Xing Y, Behrenbeck F, Bayanova M, et al. DNMT3A expression analysis in AML. Blood. 2018;132(Supplement 1):5276–5276.
  • Lin N, Fu W, Zhao C, et al. Biologico-clinical significance of DNMT3A variants expression in acute myeloid leukemia. Biochem Biophys Res Commun. 2017;494(1-2):270–277.
  • Asfour IA, Hegab HM, El-Salakawy WA, et al. Prognostic significance of DNMT3a gene expression and reactive nitrogen species in newly diagnosed egyptian de novo adult acute myeloid leukemia patients. Egypt J Med Hum Genet. 2020;21(1):34.
  • Svedruzić ZM, Reich NO. Mechanism of allosteric regulation of Dnmt1’s processivity. Biochemistry. 2005;44(45):14977–14988.
  • Leonhardt H, Page AW, Weier HU, et al. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 1992;71(5):865–873.
  • Vilkaitis G, Suetake I, Klimasauskas S, et al. Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase. J Biol Chem. 2005;280(1):64–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.