2,745
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Treatment of relapsed and refractory Waldenstrom Macroglobulinemia

, ORCID Icon, ORCID Icon &
Pages 30-41 | Received 20 Jul 2022, Accepted 18 Sep 2022, Published online: 25 Oct 2022

References

  • Kyle RA, Larson DR, McPhail ED, et al. Fifty-Year incidence of Waldenström Macroglobulinemia in Olmsted county, Minnesota, From 1961 Through 2010: a Population-Based study with complete case capture and hematopathologic review. Mayo Clin Proc. 2018;93(6):739–746.
  • Sekhar J, Sanfilippo K, Zhang Q, et al. Waldenström Macroglobulinemia: a surveillance, epidemiology, and end results database review from 1988 to 2005. Leuk Lymphoma. 2012;53(8):1625–1626.
  • Amaador K, Kersten MJ, Visser O, et al. Primary therapy and relative survival in patients with lymphoplasmacytic lymphoma/Waldenström macroglobulinaemia: a population-based study in The Netherlands, 1989–2018. Br J Haematol. 2022;196(3):660–669.
  • Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the world health organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390.
  • Abeykoon JP, Zanwar S, Ansell SM, et al. Predictors of symptomatic hyperviscosity in Waldenström Macroglobulinemia. Am J Hematol. 2018;93(11):1384–1393.
  • Gustine JN, Meid K, Dubeau T, et al. Serum IgM level as predictor of symptomatic hyperviscosity in patients with Waldenström macroglobulinaemia. Br J Haematol. 2017;177(5):717–725.
  • Janz S. Waldenström Macroglobulinemia: clinical and immunological aspects, natural history, cell of origin, and emerging mouse models. ISRN Hematol. 2013;2013:815325.
  • Dimopoulos MA, Kastritis E. How I treat Waldenström Macroglobulinemia. Blood. 2019;134(23):2022–2035.
  • Treon SP. How I treat Waldenström Macroglobulinemia. Blood. 2015;126(6):721–732.
  • Kastritis E, Leblond V, Dimopoulos MA, ESMO Guidelines Committee, et al. Waldenström’s macroglobulinaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv41–iv50.
  • Ansell SM, Kyle RA, Reeder CB, et al. Diagnosis and management of Waldenström Macroglobulinemia: Mayo stratification of Macroglobulinemia and risk-adapted therapy (mSMART) guidelines. Mayo Clin Proc. 2010;85(9):824–833.
  • García-Sanz R, Jiménez C, Puig N, et al. Origin of waldenstrom’s macroglobulinaemia. Best Pract Res Clin Haematol. 2016;29(2):136–147.
  • Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenström’s Macroglobulinemia. N Engl J Med. 2012;367(9):826–833.
  • Kaiser LM, Hunter ZR, Treon SP, et al. CXCR4 in Waldenström’s macroglobulinema: chances and challenges. Leukemia. 2021;35(2):333–345.
  • Treon SP, Cao Y, Xu L, et al. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenström Macroglobulinemia. Blood. 2014;123(18):2791–2796.
  • Hunter ZR, Yang G, Xu L, et al. Genomics, signaling, and treatment of Waldenström Macroglobulinemia. J Clin Oncol. 2017;35(9):994–1001.
  • Gustine JN, Tsakmaklis N, Demos MG, et al. TP53 mutations are associated with mutated MYD88 and CXCR4, and confer an adverse outcome in Waldenström macroglobulinaemia. Br J Haematol. 2019;184(2):242–245.
  • Poulain S, Roumier C, Bertrand E, et al. TP53 mutation and its prognostic significance in Waldenstrom’s Macroglobulinemia. Clin Cancer Res. 2017;23(20):6325–6335.
  • Hunter ZR, Xu L, Yang G, et al. The genomic landscape of Waldenström Macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–1646.
  • Leblond V, Kastritis E, Advani R, et al. Treatment recommendations from the eighth international workshop on waldenstrom’s Macroglobulinemia. Blood. 2016;128(10):1321–1328.
  • Buske C, Sadullah S, Kastritis E, European Consortium for Waldenström’s Macroglobulinemia, et al. Treatment and outcome patterns in European patients with Waldenström’s macroglobulinaemia: a large, observational, retrospective chart review. Lancet Haematol. 2018;5(7):e299–e309.
  • Castillo JJ, Advani RH, Branagan AR, et al. Consensus treatment recommendations from the tenth international workshop for Waldenström macroglobulinaemia. Lancet Haematol. 2020;7(11):e827–e37.
  • Paludo J, Abeykoon JP, Kumar S, et al. Dexamethasone, rituximab and cyclophosphamide for relapsed and/or refractory and treatment-naïve patients with waldenstrom Macroglobulinemia. Br J Haematol. 2017;179(1):98–105.
  • Leblond V, Lévy V, Maloisel F, et al. Multicenter, randomized comparative trial of fludarabine and the combination of cyclophosphamide-doxorubicin-prednisone in 92 patients with waldenström Macroglobulinemia in first relapse or with primary refractory disease. Blood. 2001;98(9):2640–2644.
  • Paludo J, Abeykoon JP, Shreders A, et al. Bendamustine and rituximab (BR) versus dexamethasone, rituximab, and cyclophosphamide (DRC) in patients with Waldenström’s Macroglobulinemia. Ann Hematol. 2018;97(8):1417–1425.
  • Tedeschi A, Picardi P, Ferrero S, et al. Bendamustine and rituximab combination is safe and effective as salvage regimen in Waldenström’s Macroglobulinemia. Leuk Lymphoma. 2015;56(9):2637–2642.
  • Treon SP, Hanzis C, Tripsas C, et al. Bendamustine therapy in patients with relapsed or refractory Waldenström’s Macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2011;11(1):133–135.
  • Arulogun SO, Brian D, Goradia H, et al. Bendamustine Plus rituximab for the treatment of Waldenström’s macroglobulinaemia: Patient outcomes and impact of bendamustine dosing. Blood. 2020;136(Supplement 1):10–11.
  • Laszlo D, Andreola G, Rigacci L, et al. Rituximab and subcutaneous 2-chloro-2'-deoxyadenosine combination treatment for patients with waldenstrom Macroglobulinemia: clinical and biologic results of a phase II multicenter study. J Clin Oncol. 2010;28(13):2233–2238.
  • Tedeschi A, Benevolo G, Varettoni M, Battista ML, Zinzani PL, Visco C, et al. Fludarabine plus cyclophosphamide and rituximab in Waldenstrom macroglobulinemia: an effective but myelosuppressive regimen to be offered to patients with advanced disease. Cancer. 2012;118(2):434–43.
  • Tedeschi A, Ricci F, Goldaniga MC, et al. Fludarabine, cyclophosphamide, and rituximab in salvage therapy of Waldenström’s Macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2013;13(2):231–234.
  • Souchet L, Levy V, Ouzegdouh M, FILO (French Innovative Leukemia Organization), et al. Efficacy and long-term toxicity of the rituximab-fludarabine-cyclophosphamide combination therapy in waldenstrom’s Macroglobulinemia. Am J Hematol. 2016;91(8):782–786.
  • Gavriatopoulou M, Kastritis E, Kyrtsonis M-C, et al. Phase 2 study of ofatumumab, fludarabine and cyclophosphamide in relapsed/refractory Waldenström’s Macroglobulinemia. Leuk Lymphoma. 2017;58(6):1506–1508.
  • Treon SP, Hunter ZR, Matous J, et al. Multicenter clinical trial of bortezomib in relapsed/refractory waldenstrom’s Macroglobulinemia: results of WMCTG trial 03-248. Clin Cancer Res. 2007;13(11):3320–3325.
  • Chen CI, Kouroukis CT, White D, National Cancer Institute of Canada Clinical Trials Group, et al. Bortezomib is active in patients with untreated or relapsed waldenstrom’s Macroglobulinemia: a phase II study of the national cancer institute of Canada clinical trials group. J Clin Oncol. 2007;25(12):1570–1575.
  • Ghobrial IM, Hong F, Padmanabhan S, et al. Phase II trial of weekly bortezomib in combination with rituximab in relapsed or relapsed and refractory waldenstrom Macroglobulinemia. J Clin Oncol. 2010;28(8):1422–1428.
  • Leblond V, Morel P, Dilhuidy MS, French Innovative Leukemia Organization (FILO), et al. A phase II bayesian sequential clinical trial in advanced Waldenström Macroglobulinemia patients treated with bortezomib: interest of addition of dexamethasone. Leuk Lymphoma. 2017;58(11):2615–2623.
  • Kersten MJ, Amaador K, Minnema MC, et al. Combining ixazomib With subcutaneous rituximab and dexamethasone in relapsed or refractory Waldenström’s Macroglobulinemia: Final analysis of the phase I/II HOVON124/ECWM-R2 study. J Clin Oncol. 2022;40(1):40–51.
  • Treon SP, Tripsas CK, Meid K, et al. Carfilzomib, rituximab, and dexamethasone (CaRD) treatment offers a neuropathy-sparing approach for treating Waldenström’s Macroglobulinemia. Blood. 2014;124(4):503–510.
  • Vesole DH, Richter J, Biran N, et al. Carfilzomib as salvage therapy in waldenstrom Macroglobulinemia: a case series. Leuk Lymphoma. 2018;59(1):259–261.
  • Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenström’s Macroglobulinemia. N Engl J Med. 2015;372(15):1430–1440.
  • Dimopoulos MA, Trotman J, Tedeschi A, iNNOVATE Study Group and the European Consortium for Waldenström’s Macroglobulinemia, et al. Ibrutinib for patients with rituximab-refractory Waldenström’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18(2):241–250.
  • Dimopoulos MA, Tedeschi A, Trotman J, et al. Phase 3 trial of ibrutinib plus rituximab in Waldenström’s Macroglobulinemia. N Engl J Med. 2018;378(25):2399–2410.
  • Owen RG, McCarthy H, Rule S, et al. Acalabrutinib monotherapy in patients with Waldenström Macroglobulinemia: a single-arm, multicentre, phase 2 study. Lancet Haematol. 2020;7(2):e112–e21.
  • Trotman J, Opat S, Gottlieb D, et al. Zanubrutinib for the treatment of patients with Waldenström Macroglobulinemia: 3 years of follow-up. Blood. 2020;136(18):2027–2037.
  • Tam CS, Opat S, D'Sa S, et al. A randomized phase 3 trial of zanubrutinib vs ibrutinib in symptomatic Waldenström Macroglobulinemia: the ASPEN study. Blood. 2020;136(18):2038–2050.
  • An G, Zhou D, Cheng S, et al. A phase II trial of the Bruton Tyrosine-Kinase inhibitor zanubrutinib (BGB-3111) in patients with relapsed/refractory Waldenström Macroglobulinemia. Clin Cancer Res. 2021;27(20):5492–5501.
  • Dimopoulos M, Sanz RG, Lee HP, et al. Zanubrutinib for the treatment of MYD88 wild-type Waldenström Macroglobulinemia: a substudy of the phase 3 ASPEN trial. Blood Adv. 2020;4(23):6009–6018.
  • Sekiguchi N, Rai S, Munakata W, et al. A multicenter, open-label, phase II study of tirabrutinib (ONO/GS-4059) in patients with Waldenström’s Macroglobulinemia. Cancer Sci. 2020;111(9):3327–3337.
  • Zhou D, Jin J, Fu Z-Z, et al. Efficacy and safety of orelabrutinib in relapsed/refractory waldenstrom’s Macroglobulinemia patients. Blood. 2021;138(Supplement 1):46–46.
  • Castillo JJ, Allan JN, Siddiqi T, et al. Venetoclax in previously treated Waldenström Macroglobulinemia. J Clin Oncol. 2022;40(1):63–71.
  • Tomowiak C, Poulain S, Herbaux C, et al. Obinutuzumab and idelalisib in symptomatic patients with relapsed/refractory Waldenström Macroglobulinemia. Blood Adv. 2021;5(9):2438–2446.
  • Castillo JJ, Libby EN, Ansell SM, et al. Multicenter phase 2 study of daratumumab monotherapy in patients with previously treated Waldenström Macroglobulinemia. Blood Adv. 2020;4(20):5089–5092.
  • Treon SP, Meid K, Hunter ZR, et al. Phase 1 study of ibrutinib and the CXCR4 antagonist ulocuplumab in CXCR4-mutated Waldenström Macroglobulinemia. Blood. 2021;138(17):1535–1539.
  • Rummel MJ, Gregory SA. Bendamustine’s emerging role in the management of lymphoid malignancies. Semin Hematol. 2011;48 Suppl 1:S24–S36.
  • Carney DA, Westerman DA, Tam CS, et al. Therapy-related myelodysplastic syndrome and acute myeloid leukemia following fludarabine combination chemotherapy. Leukemia. 2010;24(12):2056–2062.
  • Smith MR, Neuberg D, Flinn IW, et al. Incidence of therapy-related myeloid neoplasia after initial therapy for chronic lymphocytic leukemia with fludarabine-cyclophosphamide versus fludarabine: long-term follow-up of US intergroup study E2997. Blood. 2011;118(13):3525–3527.
  • Zhou Y, Tang G, Medeiros LJ, et al. Therapy-related myeloid neoplasms following fludarabine, cyclophosphamide, and rituximab (FCR) treatment in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Mod Pathol. 2012;25(2):237–245.
  • Dimopoulos MA, García-Sanz R, Gavriatopoulou M, et al. Primary therapy of waldenstrom Macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR): long-term results of a phase 2 study of the european myeloma network (EMN). Blood. 2013;122(19):3276–3282.
  • Treon SP, Meid K, Gustine J, et al. Long-Term outcome of a prospective study of bortezomib, dexamethasone and rituximab (BDR) in previously untreated, symptomatic patients with waldenstrom’s Macroglobulinemia. Blood. 2015;126(23):1833–1833.
  • Sidana S, Narkhede M, Elson P, et al. Neuropathy and efficacy of once weekly subcutaneous bortezomib in multiple myeloma and light chain (AL) amyloidosis. PLoS One. 2017;12(3):e0172996.
  • Kumar SK, Berdeja JG, Niesvizky R, et al. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. Lancet Oncol. 2014;15(13):1503–1512.
  • Covey T, Barf T, Gulrajani M, et al.
  • Roger Owen HM, Rule S, D'Sa S, et al. Acalabrutinib in treatment-naive or relapsed/refractory Waldenström macroglobulinemia: 5-year follow-up of a phase 2, Single-Arm Study. EHA 20222022.
  • Tam CSL, Garcia-Sanz R, Opat S, et al. ASPEN: Long-term follow-up results of a phase 3 randomized trial of zanubrutinib (ZANU) versus ibrutinib (IBR) in patients with Waldenström Macroglobulinemia (WM). J Clin Oncol. 2022;40(16_suppl):7521–7521.
  • Xu L, Tsakmaklis N, Yang G, et al. Acquired mutations associated with ibrutinib resistance in Waldenström Macroglobulinemia. Blood. 2017;129(18):2519–2525.
  • Mato AR, Shah NN, Jurczak W, et al. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): a phase 1/2 study. The Lancet. 2021;397(10277):892–901.
  • Anagnostopoulos A, Dimopoulos MA, Aleman A, et al. High-dose chemotherapy followed by stem cell transplantation in patients with resistant waldenstrom’s Macroglobulinemia. Bone Marrow Transplant. 2001;27(10):1027–1029.
  • Tournilhac O, Leblond V, Tabrizi R, et al. Transplantation in waldenstrom’s Macroglobulinemia–the french experience. Semin Oncol. 2003;30(2):291–296.
  • Anagnostopoulos A, Hari PN, Pérez WS, et al. Autologous or allogeneic stem cell transplantation in patients with waldenstrom’s Macroglobulinemia. Biol Blood Marrow Transplant. 2006;12(8):845–854.
  • Gilleece MH, Pearce R, Linch DC, et al. The outcome of haemopoietic stem cell transplantation in the treatment of lymphoplasmacytic lymphoma in the UK: a british society bone marrow transplantation study. Hematology. 2008;13(2):119–127.
  • Kyriakou C, Canals C, Sibon D, et al. High-dose therapy and autologous stem-cell transplantation in Waldenstrom Macroglobulinemia: the lymphoma working party of the european group for blood and marrow transplantation. J Clin Oncol. 2010;28(13):2227–2232.
  • Kyriakou C, Advani RH, Ansell SM, et al. Indications for hematopoietic stem cell transplantation in patients with waldenstrom’s Macroglobulinemia: a consensus project of the EBMT lymphoma working party (LWP)/european consortium for waldenstrom’s Macroglobulinemia (ECWM)/international waldenstrom’s Macroglobulinemia foundation (IWMF). Blood. 2017;130:2026.
  • Cornell RF, Bachanova V, D'Souza A, et al. Allogeneic transplantation for relapsed Waldenström Macroglobulinemia and lymphoplasmacytic lymphoma. Biol Blood Marrow Transplant. 2017;23(1):60–66.
  • Kyriakou C, Canals C, Cornelissen JJ, et al. Allogeneic stem-cell transplantation in patients with Waldenström Macroglobulinemia: report from the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol. 2010;28(33):4926–4934.
  • Kapoor P, Ansell SM, Fonseca R, et al. Diagnosis and management of waldenstrom Macroglobulinemia: mayo stratification of Macroglobulinemia and Risk-Adapted therapy (mSMART) guidelines 2016. JAMA Oncol. 2017;3(9):1257–1265.
  • Owen RG, Pratt G, Auer RL, British Committee for Standards in Haematology, et al. Guidelines on the diagnosis and management of Waldenström macroglobulinaemia. Br J Haematol. 2014;165(3):316–333.
  • Chng WJ, Schop RF, Price-Troska T, et al. Gene-expression profiling of waldenstrom Macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma. Blood. 2006;108(8):2755–2763.
  • NIH. Ibrutinib + Venetoclax in Untreated WM. 2020. https://clinicaltrials.gov/ct2/show/NCT04273139
  • Kuhne MR, Mulvey T, Belanger B, et al. BMS-936564/MDX-1338: a fully human Anti-CXCR4 antibody induces apoptosis In vitro and shows antitumor activity In vivo in hematologic malignancies. Clin Cancer Res. 2013;19(2):357–366.
  • NIH. A study of ulocuplumab and ibrutinib in symptomatic patients with mutated CXCR4 Waldenstrom’s macroglobulinemia. https://www.clinicaltrials.gov/ct2/show/NCT03225716
  • Treon SP, Buske C, Thomas SK, et al. Preliminary clinical response data from a phase 1b study of mavorixafor in combination with ibrutinib in patients with Waldenström’s Macroglobulinemia with MYD88 and CXCR4 mutations. Blood. 2021;138(Supplement 1):1362–1362.
  • Amaador K, Vos JMI, Pals ST, et al. Discriminating between Waldenström Macroglobulinemia and marginal zone lymphoma using logistic LASSO regression. Leuk Lymphoma. 2022;63(5):1070–1079.
  • Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(14):1319–1331.
  • Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373(13):1207–1219.
  • Kaufman GP, Schrier SL, Lafayette RA, et al. Daratumumab yields rapid and deep hematologic responses in patients with heavily pretreated AL amyloidosis. Blood. 2017;130(7):900–902.
  • Amaador K, Martens A, de Boer R, et al. T-cell subset composition and functionality in patients with Waldenström’s Macroglobulinemia. Leuk Lymphoma. 2022;63(6):1469–1473.
  • Wohlfarth P, Worel N, Hopfinger G. Chimeric antigen receptor T-cell therapy-a hematological success story. Memo. 2018;11(2):116–121.
  • Jacobson C, Chavez JC, Sehgal AR, et al. Primary analysis of zuma-5: a phase 2 study of axicabtagene ciloleucel (Axi-Cel) in patients with relapsed/refractory (R/R) indolent Non-Hodgkin lymphoma (iNHL). Blood. 2020;136(Supplement 1):40–41.
  • Palomba ML, Qualls D, Monette S, et al. CD19-directed chimeric antigen receptor T cell therapy in Waldenström Macroglobulinemia: a preclinical model and initial clinical experience. J Immunother Cancer. 2022;10(2):e004128.
  • Bannerji R, Allan JN, Arnason JE, et al. Clinical activity of REGN1979, a bispecific human, Anti-CD20 x Anti-CD3 antibody, in patients with relapsed/refractory (R/R) B-Cell Non-Hodgkin lymphoma (B-NHL). Blood. 2019;134(Supplement_1):762–762.
  • Daratumumab plus ibrutinib in patients with Waldenström’s macroglobulinemia. https://ClinicalTrials.gov/show/NCT03679624
  • Ibrutinib and ixazomib citrate in treating patients with newly diagnosed, relapsed or refractory Waldenstrom Macroglobulinemia. https://ClinicalTrials.gov/show/NCT03506373
  • Loncastuximab Tesirine in WM. https://ClinicalTrials.gov/show/NCT05190705
  • Study of Iopofosine I 131 (CLR 131) in Select B-Cell Malignancies (CLOVER-1) and pivotal expansion in Waldenstrom Macroglobulinemia. https://ClinicalTrials.gov/show/NCT02952508
  • Treon SP, Meid K, Gustine J, et al. Long-term follow-up of ibrutinib monotherapy in symptomatic, previously treated patients with Waldenström Macroglobulinemia. J Clin Oncol. 2021;39(6):565–575.
  • Treon SP, Xu L, Hunter Z. MYD88 mutations and response to ibrutinib in Waldenström’s Macroglobulinemia. N Engl J Med. 2015;373(6):584–586.
  • Amaador K, Nieuwkerk P, Minnema MC, et al. Evaluating patients’ preferences Regarding treatment options for Waldenström’s Macroglobulinemia, a Discrete-Choice-Experiment. Blood. 2021;138(Supplement 1):835–835.
  • Kater Arnon P, Owen C, Moreno C, et al. Fixed-Duration Ibrutinib-Venetoclax in patients with chronic lymphocytic leukemia and comorbidities. NEJM Evidence. 2022;1(7):EVIDoa2200006.