1,392
Views
1
CrossRef citations to date
0
Altmetric
Letters to the Editor

ZNF384 rearrangement is the most frequent genetic lesion in adult PH-negative and Ph-like-negative B-other acute lymphoblastic leukemia. Biological and clinical findings

, , , , , , , , , , , , ORCID Icon, ORCID Icon, & show all
Pages 483-486 | Received 31 Aug 2022, Accepted 27 Oct 2022, Published online: 19 Dec 2022

References

  • Jf LI, Dai YT, Lilljebjörn H, et al. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc Natl Acad Sci USA. 2018;115: e11711–11720.
  • Zaliova M, Stuchly J, Winkowska L, et al. Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive european cohort. Haematologica. 2019;104(7):1396–1406.
  • Paietta E, Roberts KG, Wang V, et al. Molecular classification improves risk assessment in adult BCR-ABL1-negative B-ALL. Blood. 2021;138(11):948–958.
  • Moorman AV, Barretta E, Butler ER, et al. Prognostic impact of chromosomal abnormalities and copy number alterations in adult B-cell precursor acute lymphoblastic leukaemia: a UKALL14 study. Leukemia. 2022;36(3):625–636.
  • Chiaretti S, Messina M, Della Starza I, et al. Philadelphia-like acute lymphoblastic leukemia is associated with minimal residual disease persistence and poor outcome. First report of the minimal residual disease-oriented GIMEMA LAL1913. Haematologica. 2021;106(6):1559–1568.
  • Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019;51(2):296–307.
  • Yamamoto H, Hayakawa F, Yasuda T, et al. ZNF384-fusion proteins have high affinity for the transcriptional coactivator EP300 and aberrant transcriptional activities. FEBS Lett. 2019;593(16):2151–2161.
  • Qian M, Zhang H, Kham SK, et al. Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP. Genome Res. 2017;27(2):185–195.
  • Alexander TB, Gu Z, Iacobucci I, et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature. 2018;562(7727):373–379.
  • Hirabayashi S, Ohki K, Nakabayashi K, et al. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica. 2017;102(1):118–129.
  • Hirabayashi S, Butler ER, Ohki K, et al. Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the ponte di legno childhood ALL working group. Leukemia. 2021;35(11):3272–3277.
  • Liu YF, Wang BY, Zhang WN, et al. Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine. 2016;8:173–183.
  • Qin YZ, Jiang Q, Xu LP, et al. The prognostic significance of ZNF384 fusions in adult Ph-Negative B-Cell precursor acute lymphoblastic leukemia: a comprehensive cohort study from a single chinese center. Front Oncol. 2021;11:632532.
  • Bassan R, Chiaretti S, Della Starza INational pegaspargase-modified risk-oriented program for Philadelphia-negative adult acute lymphoblastic leukemia/lymphoblastic lymphoma (Ph − ALL/LL). GIMEMA LAL 1913 final results. EHA meeting, 9-17 June, et al. 2022. S113.
  • Bassan R, Chiaretti S, Della Starza I, et al. Preliminary results of the GIMEMA LAL2317 sequential chemotherapy-blinatumomab front-line trial for newly diagnosed adult Ph-negative B-lineage ALL patients. EHA meeting, 9–17, June. 2021, S114.
  • Jeha S, Choi J, Roberts KG, et al. Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy. Blood Cancer Discov. 2021;2(4):326–337.