401
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Raising the bar for lower-risk myelodysplastic syndromes

&
Pages 1082-1091 | Received 31 Jan 2023, Accepted 26 Mar 2023, Published online: 08 Apr 2023

References

  • Sekeres MA, Taylor J. Diagnosis and treatment of myelodysplastic syndromes: a review. Jama. 2022;328(9):872–880.
  • Garcia-Manero G, Chien KS, Montalban-Bravo G. Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management. Am J Hematol. 2020;95(11):1399–1420.
  • Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–2088.
  • Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–2465.
  • Bernard E, Tuechler H, Greenberg PL, et al. Molecular international prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 2022;1(7):EVIDoa2200008.
  • Nazha A, Komrokji R, Meggendorfer M, et al. Personalized prediction model to risk stratify patients with myelodysplastic syndromes. J Clin Oncol. 2021;39(33):3737–3746.
  • Venugopal S, Mascarenhas J, Steensma DP. Loss of 5q in myeloid malignancies–a gain in understanding of biological and clinical consequences. Blood Rev. 2021;46:100735.
  • Bersanelli M, Travaglino E, Meggendorfer M, et al. Classification and personalized prognostic assessment on the basis of clinical and genomic features in myelodysplastic syndromes. J Clin Oncol. 2021;39(11):1223–1233.
  • Sekeres MA. Epidemiology, natural history, and practice patterns of patients with myelodysplastic syndromes in 2010. J Natl Compr Canc Netw. 2011;9(1):57–63.
  • Brunner AM, Leitch HA, van de Loosdrecht AA, et al. Management of patients with lower-risk myelodysplastic syndromes. Blood Cancer J. 2022;12(12):166.
  • Stauder R, Yu G, Koinig KA, et al. Health-related quality of life in lower-risk MDS patients compared with age-and sex-matched reference populations: a european LeukemiaNet study. Leukemia. 2018;32(6):1380–1392.
  • Platzbecker U, Fenaux P, Adès L, et al. Proposals for revised IWG 2018 hematological response criteria in patients with MDS included in clinical trials. Blood. 2019;133(10):1020–1030.
  • Cheson BD, Greenberg PL, Bennett JM, et al. Clinical application and proposal for modification of the international working group (IWG) response criteria in myelodysplasia. Blood. 2006;108(2):419–425.
  • Nazha A, Komrokji RS, Barnard J, et al. Importance of complete remission on predicting overall survival in patients with Lower-Risk myelodysplastic syndromes (MDS). Blood. 2016;128(22):4332–4332.
  • Zeidner JF, Mazerolle F, Norton J, et al.et al Time without transfusion reliance: a novel patient-centric metric for new therapies in myelodysplastic syndromes. Haematologica. 2023;108(4):1196–1199.
  • Gelber RD, Goldhirsch A, Cole BF. Evaluation of effectiveness: q -TWiST. The international breast cancer study group. Cancer Treat Rev. 1993;19(Suppl A):73–84.
  • Sekeres MA, Watts J, Radinoff A, et al. Randomized phase 2 trial of pevonedistat plus azacitidine versus azacitidine for higher-risk MDS/CMML or low-blast AML. Leukemia. 2021;35(7):2119–2124.
  • Abel GA, Efficace F, Buckstein RJ, et al. Prospective international validation of the quality of life in myelodysplasia scale (QUALMS). Haematologica. 2016;101(6):781.
  • Oliva E, Nobile F, Dimitrov B. Development and validation of QOL-E© instrument for the assessment of health-related quality of life in myelodysplastic syndromes. Open Med. 2013;8(6):835–844.
  • Sasaki K, Jabbour E, Montalban-Bravo G, et al. Low-dose decitabine versus low-dose azacitidine in lower-risk MDS. NEJM Evid. 2022;1(10):EVIDoa2200034.
  • Kostkova P. Grand challenges in digital health. Front Public Health. 2015;3:134.
  • Jagannath S, Mikhael J, Nadeem O, et al. Digital health for patients with multiple myeloma: an unmet need. J Clin Oncol Clin Cancer Inform. 2021;5(5):1096–1105.
  • Chandhok NS, Sekeres MA. What constitutes meaningful improvement in myelodysplastic syndromes? Leuk Lymphoma. 2022;63(11):2528–2535.
  • Stein RS, Abels RI, Krantz SB. Pharmacologic doses of recombinant human erythropoietin in the treatment of myelodysplastic syndromes. Blood. 1991;78(7):1658–1663.
  • Gascón P, Krendyukov A, Mathieson N, et al. Epoetin alfa for the treatment of myelodysplastic syndrome-related anemia: a review of clinical data, clinical guidelines, and treatment protocols. Leuk Res. 2019;81:35–42.
  • Hellström-Lindberg E, Negrin R, Stein R, et al. Erythroid response to treatment with G-CSF plus erythropoietin for the anaemia of patients with myelodysplastic syndromes: proposal for a predictive model. Br J Haematol. 1997;99(2):344–351.
  • Hellström-Lindberg E, Gulbrandsen N, Lindberg G, et al. A validated decision model for treating the anaemia of myelodysplastic syndromes with erythropoietin + granulocyte colony-stimulating factor: significant effects on quality of life. Br J Haematol. 2003;120(6):1037–1046.
  • Park S, Grabar S, Kelaidi C, et al. Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: the GFM experience. Blood. 2008;111(2):574–582.
  • Sekeres MA, Fu AZ, Maciejewski JP, et al. A decision analysis to determine the appropriate treatment for low-risk myelodysplastic syndromes. Cancer. 2007;109(6):1125–1132.
  • Gabrilove J, Paquette R, Lyons RM, et al. Phase 2, single-arm trial to evaluate the effectiveness of darbepoetin alfa for correcting anaemia in patients with myelodysplastic syndromes. Br J Haematol. 2008;142(3):379–393.
  • Greenberg PL, Sun Z, Miller KB, et al. Treatment of myelodysplastic syndrome patients with erythropoietin with or without granulocyte colony-stimulating factor: results of a prospective randomized phase 3 trial by the Eastern cooperative oncology group (E1996). Blood. 2009;114(12):2393–2400.
  • Fenaux P, Santini V, Spiriti MAA, et al. A phase 3 randomized, placebo-controlled study assessing the efficacy and safety of epoetin-α in anemic patients with low-risk MDS. Leukemia. 2018;32(12):2648–2658.
  • Platzbecker U. Treatment of MDS. Blood. 2019;133(10):1096–1107.
  • Santini V, Schemenau J, Levis A, et al. Can the revised IPSS predict response to erythropoietic-stimulating agents in patients with classical IPSS low or intermediate-1 MDS? Blood. 2013;122(13):2286–2288.
  • List A, Kurtin S, Roe DJ, et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med. 2005;352(6):549–557.
  • List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006;355(14):1456–1465.
  • Schuler E, Giagounidis A, Haase D, et al. Results of a multicenter prospective phase II trial investigating the safety and efficacy of lenalidomide in patients with myelodysplastic syndromes with isolated del(5q) (LE-Mon 5). Leukemia. 2016;30(7):1580–1582.
  • Fenaux P, Giagounidis A, Selleslag D, et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with low-/intermediate-1-risk myelodysplastic syndromes with del5q. Blood. 2011;118(14):3765–3776.
  • List AF, Sun Z, Verma A, et al. Lenalidomide-Epoetin alfa versus lenalidomide monotherapy in myelodysplastic syndromes refractory to recombinant erythropoietin. J Clin Oncol. 2021;39(9):1001–1009
  • López Cadenas F, Lumbreras E, González T, et al. Evaluation of lenalidomide (LEN) Vs placebo in Non-Transfusion dependent low risk del(5q) MDS patients. Final results of Sintra-REV phase III international multicenter clinical trial. Blood. 2022;140(Supplement 1):1109–1111.
  • Sperling AS, Guerra VA, Kennedy JA, et al. Lenalidomide promotes the development of TP53-mutated therapy-related myeloid neoplasms. Blood. 2022;140(16):1753–1763.
  • Bewersdorf JP, Zeidan AM. Transforming growth factor (TGF)-β pathway as a therapeutic target in lower risk myelodysplastic syndromes. Leukemia. 2019;33(6):1303–1312.
  • Platzbecker U, Germing U, Götze KS, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18(10):1338–1347.
  • Fenaux P, Platzbecker U, Mufti GJ, et al. Luspatercept in patients with Lower-Risk myelodysplastic syndromes. N Engl J Med. 2020;382(2):140–151.
  • Garcia-Manero G, Mufti GJ, Fenaux P, et al. Neutrophil and platelet increases with luspatercept in lower-risk MDS: secondary endpoints from the MEDALIST trial. Blood. 2022;139(4):624–629.
  • Zeidan AM, Platzbecker U, Garcia-Manero G, et al. Longer-term benefit of luspatercept in transfusion-dependent lower-risk myelodysplastic syndromes with ring sideroblasts. Blood. 2022;140(20):2170–2174.
  • Della Porta M, Platzbecker U, Santini V, et al. The commands trial: a phase 3 study of the efficacy and safety of luspatercept versus epoetin alfa for the treatment of anemia due to IPSS-R very low-, low-, or Intermediate-Risk MDS in erythropoiesis stimulating Agent-Naive patients who require RBC transfusions. Blood. 2020;136(Supplement 1):1–2.
  • Bristol Myers Squibb. Bristol myers squibb announces positive topline results of phase 3 COMMANDS trial. 2022.
  • Santini V, Fenaux P. Treatment of myelodysplastic syndrome with thrombomimetic drugs. Sem Hematol. 2015;52(1):38–45.
  • Giagounidis A, Mufti GJ, Fenaux P, et al. Results of a randomized, double-blind study of romiplostim versus placebo in patients with low/intermediate-1-risk myelodysplastic syndrome and thrombocytopenia. Cancer. 2014;120(12):1838–1846.
  • Kantarjian HM, Fenaux P, Sekeres MA, et al. Long-term follow-up for up to 5 years on the risk of leukaemic progression in thrombocytopenic patients with lower-risk myelodysplastic syndromes treated with romiplostim or placebo in a randomised double-blind trial. Lancet Haematol. 2018;5(3):e117–e126.
  • Oliva EN, Alati C, Santini V, et al. Long term effects of eltrombopag treatment versus placebo for low-risk myelodysplastic syndromes with thrombocytopenia (EQoL-MDS): interim results of a single-blind, randomised, controlled, phase 2 superiority trial. Blood. 2019;134:3000.
  • Koreth J, Pidala J, Perez WS, et al. Role of reduced-intensity conditioning allogeneic hematopoietic stem-cell transplantation in older patients with de novo myelodysplastic syndromes: an international collaborative decision analysis. J Clin Oncol. 2013;31(21):2662–2670.
  • Dong W, Qian Y, Yang L. Telomerase, hTERT and splice variants in patients with myelodysplastic syndromes. Leuk Res. 2014;38(7):830–835.
  • Briatore F, Barrera G, Pizzimenti S, et al. Increase of telomerase activity and hTERT expression in myelodysplastic syndromes. Cancer Biol Ther. 2009;8(10):883–889.
  • Gürkan E, Tanrıverdi K, Başlamışlı F. Telomerase activity in myelodysplastic syndromes. Leuk Res. 2005;29(10):1131–1139.
  • Steensma DP, Fenaux P, Van Eygen K, et al. Imetelstat achieves meaningful and durable transfusion independence in high transfusion–burden patients with Lower-Risk myelodysplastic syndromes in a phase II study. J Clin Oncol. 2021;39(1):48–56.
  • Geron announces positive top-line results from IMerge phase 3 trial of imetelstat in lower risk MDS. https://ir.geron.com/investors/press-releases/press-release-details/2023/Geron-Announces-Positive-Top-Line-Results-from-IMerge-Phase-3-Trial-of-Imetelstat-in-Lower-Risk-MDS/default.aspx
  • Garcia-Manero G, McCloskey J, Griffiths EA, et al. Pharmacokinetic exposure equivalence and preliminary efficacy and safety from a randomized cross over phase 3 study (ASCERTAIN study) of an oral hypomethylating agent ASTX727 (cedazuridine/decitabine) compared to IV decitabine. Blood. 2019;134:846.
  • Garcia-Manero G, Bachiashvili K, Amin H, et al. ASTX727-03: phase 1 study evaluating oral decitabine/cedazuridine (ASTX727) Low-Dose (LD) in Lower-Risk myelodysplastic syndromes (LR-MDS) patients. Blood. 2022;140(Supplement 1):1112–1114.
  • Chen N, Hao C, Peng X, et al. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N Engl J Med. 2019;381(11):1001–1010.
  • Henry DH, Glaspy J, Harrup R, et al. Roxadustat for the treatment of anemia in patients with lower-risk myelodysplastic syndrome: open-label, dose-selection, lead-in stage of a phase 3 study. Am J Hematol. 2022;97(2):174–184.
  • Stein EM, DiNardo CD, Pollyea DA, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–731.
  • Dutta R, Zhang TY, Köhnke T, et al. Enasidenib drives human erythroid differentiation independently of isocitrate dehydrogenase 2. J Clin Invest. 2020;130(4):1843–1849.
  • Cucchi DG, Polak TB, Ossenkoppele GJ, et al. Two decades of targeted therapies in acute myeloid leukemia. Leukemia. 2021;35(3):651–660.
  • Pellagatti A, Armstrong RN, Steeples V, et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood. 2018;132(12):1225–1240.
  • Lee SC-W, Dvinge H, Kim E, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22(6):672–678.
  • Steensma DP, Wermke M, Klimek VM, et al. Phase I first-in-Human dose escalation study of the oral SF3B1 modulator H3B-8800 in myeloid neoplasms. Leukemia. 2021;35(12):3542–3550.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.