246
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Role of interleukins in acute myeloid leukemia

ORCID Icon, , , &
Pages 1400-1413 | Received 27 Apr 2023, Accepted 21 May 2023, Published online: 01 Jun 2023

References

  • Stelmach P, Trumpp A. Leukemic stem cells and therapy resistance in acute myeloid leukemia. Haematologica. 2023;108(2):353–366.
  • Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;20(5):303–320.
  • Goulard M, Dosquet C, Bonnet D. Role of the microenvironment in myeloid malignancies. Cell Mol Life Sci. 2018;75(8):1377–1391.
  • Bianco P. Bone and the hematopoietic niche: a tale of two stem cells. Blood. 2011;117(20):5281–5288.
  • Hurwitz SN, Jung SK, Kurre P. Hematopoietic stem and progenitor cell signaling in the niche. Leukemia. 2020;34(12):3136–3148.
  • Cossío I, Lucas D, Hidalgo A. Neutrophils as regulators of the hematopoietic niche. Blood. 2019;133(20):2140–2148.
  • Kode A, Manavalan JS, Mosialou I, et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature. 2014;506(7487):240–244.
  • Khaldoyanidi S, Nagorsen D, Stein A, et al. Immune biology of acute myeloid leukemia: implications for immunotherapy. J Clin Oncol. 2021;39(5):419–432.
  • Vago L, Gojo I. Immune escape and immunotherapy of acute myeloid leukemia. J Clin Invest. 2020;130(4):1552–1564.
  • Luciano M, Krenn PW, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front Immunol. 2022;13:1000996.
  • Carey A, Edwards D, Eide CA, et al. Identification of interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid leukemia. Cell Rep. 2017;18(13):3204–3218.
  • Zhong C, Wang R, Hua M, et al. NLRP3 inflammasome promotes the progression of acute myeloid leukemia via IL-1beta pathway. Front Immunol. 2021;12:661939.
  • Sunthankar KI, Jenkins MT, Cote CH, et al. Isocitrate dehydrogenase mutations are associated with altered IL-1beta responses in acute myeloid leukemia. Leukemia. 2022;36(4):923–934.
  • Hosseini MM, Kurtz SE, Abdelhamed S, et al. Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes. Leukemia. 2018;32(11):2374–2387.
  • Bulaeva E, Pellacani D, Nakamichi N, et al. MYC-induced human acute myeloid leukemia requires a continuing IL-3/GM-CSF costimulus. Blood. 2020;136(24):2764–2773.
  • Sung PJ, Sugita M, Koblish H, et al. Hematopoietic cytokines mediate resistance to targeted therapy in FLT3-ITD acute myeloid leukemia. Blood Adv. 2019;3(7):1061–1072.
  • Zhang Y, Guo H, Zhang Z, et al. IL-6 promotes chemoresistance via upregulating CD36 mediated fatty acids uptake in acute myeloid leukemia. Exp Cell Res. 2022;415(1):113112.
  • Xu X, Ye Y, Wang X, et al. JMJD3-regulated expression of IL-6 is involved in the proliferation and chemosensitivity of acute myeloid leukemia cells. Biol Chem. 2021;402(7):815–824.
  • Mei Y, Ren K, Liu Y, et al. Bone marrow-confined IL-6 signaling mediates the progression of myelodysplastic syndromes to acute myeloid leukemia. J Clin Invest. 2022;132(17):e152673.
  • Zhang TY, Dutta R, Benard B, et al. IL-6 blockade reverses bone marrow failure induced by human acute myeloid leukemia. Sci Transl Med. 2020;12(538):eaax5104.
  • Vijay V, Miller R, Vue GS, et al. Interleukin-8 blockade prevents activated endothelial cell mediated proliferation and chemoresistance of acute myeloid leukemia. Leuk Res. 2019;84:106180.
  • Lin B, Zhao K, Yang D, et al. Wogonoside impedes the progression of acute myeloid leukemia through inhibiting bone marrow angiogenesis. J Cell Physiol. 2019;234(2):1913–1924.
  • Wu J, Zhang L, Feng Y, et al. HDAC8 promotes daunorubicin resistance of human acute myeloid leukemia cells via regulation of IL-6 and IL-8. Biol Chem. 2021;402(4):461–468.
  • Tao Q, Pan Y, Wang Y, et al. Regulatory T cells-derived IL-35 promotes the growth of adult acute myeloid leukemia blasts. Int J Cancer. 2015;137(10):2384–2393.
  • Bachanova V, Cooley S, Defor TE, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014;123(25):3855–3863.
  • Pena-Martinez P, Eriksson M, Ramakrishnan R, et al. Interleukin 4 induces apoptosis of acute myeloid leukemia cells in a Stat6-dependent manner. Leukemia. 2018;32(3):588–596.
  • Qian F, Arner BE, Kelly KM, et al. Interleukin-4 treatment reduces leukemia burden in acute myeloid leukemia. Faseb J. 2022;36(5):e22328.
  • Sanchez-Correa B, Bergua JM, Pera A, et al. In vitro culture with interleukin-15 leads to expression of activating receptors and recovery of natural killer cell function in acute myeloid leukemia patients. Front Immunol. 2017;8:931.
  • Firouzi J, Hajifathali A, Azimi M, et al. Hsp70, in combination with IL-15 and PD-1 blocker, interferes with the induction of cytotoxic NK cells in relapsed acute myeloid leukemia patients. Cell J. 2023;25(2):92–101.
  • Romee R, Cooley S, Berrien-Elliott MM, et al. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood. 2018;131(23):2515–2527.
  • Sanchez-Correa B, Bergua JM, Campos C, et al. Cytokine profiles in acute myeloid leukemia patients at diagnosis: survival is inversely correlated with IL-6 and directly correlated with IL-10 levels. Cytokine. 2013;61(3):885–891.
  • Musuraca G, De Matteis S, Napolitano R, et al. IL-17/IL-10 double-producing T cells: new link between infections, immunosuppression and acute myeloid leukemia. J Transl Med. 2015;13:229.
  • Rickmann M, Macke L, Sundarasetty BS, et al. Monitoring dendritic cell and cytokine biomarkers during remission prior to relapse in patients with FLT3-ITD acute myeloid leukemia. Ann Hematol. 2013;92(8):1079–1090.
  • Ko CY, Wang WL, Li CF, et al. IL-18-induced interaction between IMP3 and HuR contributes to COX-2 mRNA stabilization in acute myeloid leukemia. J Leukoc Biol. 2016;99(1):131–141.
  • Bachmann M, Dragoi C, Poleganov MA, et al. Interleukin-18 directly activates T-bet expression and function via p38 mitogen-activated protein kinase and nuclear factor-kappaB in acute myeloid leukemia-derived predendritic KG-1 cells. Mol Cancer Ther. 2007;6(2):723–731.
  • Naef P, Radpour R, Jaeger-Ruckstuhl C, et al. Wnt and notch pathways regulate stemness of myeloid leukemia cells via IL33/ST2 signaling. Blood. 2022;140(Supplement 1):2986–2987.
  • Wang Y, Luo H, Wei M, et al. IL-33/IL1RL1 axis regulates cell survival through the p38 MAPK pathway in acute myeloid leukemia. Leuk Res. 2020;96:106409.
  • Qin L, Dominguez D, Chen S, et al. Exogenous IL-33 overcomes T cell tolerance in murine acute myeloid leukemia. oncotarget. 2016;7(38):61069–61080.
  • Zhang G, Luo W, Yang W, et al. The importance of the IL-1 family of cytokines in nanoimmunosafety and nanotoxicology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(6):e1850.
  • Sun R, Gao DS, Shoush J, et al. The IL-1 family in tumorigenesis and antitumor immunity. Semin Cancer Biol. 2022;86(Pt 2):280–295.
  • Broderick L, Hoffman HM. IL-1 and autoinflammatory disease: biology, pathogenesis and therapeutic targeting. Nat Rev Rheumatol. 2022;18(8):448–463.
  • Li Y, Yu M, Lu M. Pathophysiology, clinical manifestations and current management of IL-1 mediated monogenic systemic autoinflammatory diseases, a literature review. Pediatr Rheumatol Online J. 2022;20(1):90.
  • Iznardo H, Puig L. IL-1 family cytokines in inflammatory dermatoses: pathogenetic role and potential therapeutic implications. IJMS. 2022;23(16):9479.
  • Pretre V, Papadopoulos D, Regard J, et al. Interleukin-1 (IL-1) and the inflammasome in cancer. Cytokine. 2022;153:155850.
  • Cozzolino F, Rubartelli A, Aldinucci D, et al. Interleukin 1 as an autocrine growth factor for acute myeloid leukemia cells. Proc Natl Acad Sci U S A. 1989;86(7):2369–2373.
  • Katsumura KR, Ong IM, DeVilbiss AW, et al. GATA Factor-Dependent Positive-Feedback circuit in acute myeloid leukemia cells. Cell Rep. 2016;16(9):2428–2441.
  • Han Y, Ye A, Bi L, et al. Th17 cells and interleukin-17 increase with poor prognosis in patients with acute myeloid leukemia. Cancer Sci. 2014;105(8):933–942.
  • Varricchi G, Poto R, Marone G, et al. IL-3 in the development and function of basophils. Semin Immunol. 2021;54:101510.
  • Dougan M, Dranoff G, Dougan SK. GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation. Immunity. 2019;50(4):796–811.
  • Borriello F, Galdiero MR, Varricchi G, et al. Innate immune modulation by GM-CSF and IL-3 in health and disease. IJMS. 2019;20(4):834.
  • Sadras T, Perugini M, Kok CH, et al. Interleukin-3-mediated regulation of beta-catenin in myeloid transformation and acute myeloid leukemia. J Leukoc Biol. 2014;96(1):83–91.
  • Tafuri A, Lemoli R, Chen R, et al. Combination of hematopoietic growth factors containing IL-3 induce acute myeloid leukemia cell sensitization to cycle specific and cycle non-specific drugs. Leukemia. 1994;8(5):749–757.
  • Testa U, Riccioni R, Militi S, et al. Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood. 2002;100(8):2980–2988.
  • Favreau AJ, Sathyanarayana P. miR-590-5p, miR-219-5p, miR-15b and miR-628-5p are commonly regulated by IL-3, GM-CSF and G-CSF in acute myeloid leukemia. Leuk Res. 2012;36(3):334–341.
  • Gaudet F, Nemeth JF, McDaid R, et al. Development of a CD123xCD3 bispecific antibody (JNJ-63709178) for the treatment of acute myeloid leukemia (AML). Blood. 2016;128(22):2824–2824.
  • Perriello VM, Rotiroti MC, Pisani I, et al. Tuned IL3-Zetakine coupled to a CD33 costimulatory receptor as a dual CAR for safer and selective targeting of acute myeloid leukemia. Blood. 2022;140(Supplement 1):10237–10238.
  • Moeller R, Scherer J, Kassim S. 871 Construction and evaluation of interleukin 3 (IL3)-zetakine redirected cytolytic T cells for the treatment of CD123 expressing acute myeloid leukemia. J Immunother Cancer. 2021;9(Suppl 2):A912–A912.
  • Pautas C, Merabet F, Thomas X, et al. Randomized study of intensified anthracycline doses for induction and recombinant interleukin-2 for maintenance in patients with acute myeloid leukemia age 50 to 70 years: results of the ALFA-9801 study. J Clin Oncol. 2010;28(5):808–814.
  • Brune M, Castaigne S, Catalano J, et al. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial. Blood. 2006;108(1):88–96.
  • Kennedy-Nasser AA, Ku S, Castillo-Caro P, et al. Ultra low-dose IL-2 for GVHD prophylaxis after allogeneic hematopoietic stem cell transplantation mediates expansion of regulatory T cells without diminishing antiviral and antileukemic activity. Clin Cancer Res. 2014;20(8):2215–2225.
  • Cooley S, He F, Bachanova V, et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 2019;3(13):1970–1980.
  • Chen J, Wei Y, Yang W, et al. IL-6: the link between inflammation, immunity and breast cancer. Front Oncol. 2022;12:903800.
  • Millrine D, Jenkins RH, Hughes STO, et al. Making sense of IL-6 signalling cues in pathophysiology. FEBS Lett. 2022;596(5):567–588.
  • Monsour M, Croci DM, Agazzi S, et al. Contemplating IL-6, a double-edged sword cytokine: which side to use for stroke pathology? CNS Neurosci Ther. 2023;29(2):493–497.
  • Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol. 2022;12:1023177.
  • Forcina L, Franceschi C, Musaro A. The hormetic and hermetic role of IL-6. Ageing Res Rev. 2022;80:101697.
  • Raskova M, Lacina L, Kejik Z, et al. The role of IL-6 in cancer cell invasiveness and Metastasis-Overview and therapeutic opportunities. Cells. 2022;11(22):3698.
  • Giraldez MD, Carneros D, Garbers C, et al. New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology. Nat Rev Gastroenterol Hepatol. 2021;18(11):787–803.
  • Gu J, Huang X, Zhang Y, et al. Cerebrospinal fluid interleukin-6 is a potential diagnostic biomarker for Central nervous system involvement in adult acute myeloid leukemia. Front Oncol. 2022;12:1013781.
  • Su YC, Li SC, Wu YC, et al. Resveratrol downregulates interleukin-6-stimulated sonic hedgehog signaling in human acute myeloid leukemia. Evid Based Complement Alternat Med. 2013;2013:547430.
  • Schuringa J-J, Wierenga ATJ, Kruijer W, et al. Constitutive Stat3, Tyr705, and Ser727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6. Blood. 2000;95(12):3765–3770.
  • Hou D, Wang B, You R, et al. Stromal cells promote chemoresistance of acute myeloid leukemia cells via activation of the IL-6/STAT3/OXPHOS axis. Ann Transl Med. 2020;8(21):1346.
  • Khosravi M, Masoumi HT, Gholami K, et al. The relationship between fatigue and cytokine levels in patients with acute myeloid leukemia. Int J Hematol Oncol Stem Cell Res. 2018;12(4):318–321.
  • Fung FY, Li M, Breunis H, et al. Correlation between cytokine levels and changes in fatigue and quality of life in patients with acute myeloid leukemia. Leuk Res. 2013;37(3):274–279.
  • Panju AH, Danesh A, Minden MD, et al. Associations between quality of life, fatigue, and cytokine levels in patients aged 50+ with acute myeloid leukemia. Support Care Cancer. 2009;17(5):539–546.
  • Teijeira A, Garasa S, Ochoa MC, et al. IL8, neutrophils, and NETs in a collusion against cancer immunity and immunotherapy. Clin Cancer Res. 2021;27(9):2383–2393.
  • Rizzo M, Varnier L, Pezzicoli G, et al. IL-8 and its role as a potential biomarker of resistance to anti-angiogenic agents and immune checkpoint inhibitors in metastatic renal cell carcinoma. Front Oncol. 2022;12:990568.
  • Singh JK, Simões BM, Howell SJ, et al. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res. 2013;15(4):210.
  • David JM, Dominguez C, Hamilton DH, et al. The IL-8/IL-8R axis: a double agent in tumor immune resistance. Vaccines (Basel). 2016;4(3):22.
  • Li Y, Cheng J, Li Y, et al. CXCL8 is associated with the recurrence of patients with acute myeloid leukemia and cell proliferation in leukemia cell lines. Biochem Biophys Res Commun. 2018;499(3):524–530.
  • Cheng J, Li Y, Liu S, et al. CXCL8 derived from mesenchymal stromal cells supports survival and proliferation of acute myeloid leukemia cells through the PI3K/AKT pathway. Faseb J. 2019;33(4):4755–4764.
  • Abdul-Aziz AM, Shafat MS, Mehta TK, et al. MIF-Induced stromal PKCbeta/IL8 is essential in human acute myeloid leukemia. Cancer Res. 2017;77(2):303–311.
  • Sepehrizadeh Z, Mohammadi M, Emami A, et al. Assessment of cytokine expression profile in acute myeloid leukemia patients before and after chemotherapy. Turk J Haematol. 2014;31(2):149–154.
  • Zysk W, Gleń J, Trzeciak M. Current insight into the role of IL-35 and its potential involvement in the pathogenesis and therapy of atopic dermatitis. IJMS. 2022;23(24):15709.
  • Liu K, Huang A, Nie J, et al. IL-35 regulates the function of immune cells in tumor microenvironment. Front Immunol. 2021;12:683332.
  • Yazdani Z, Rafiei A, Golpour M, et al. IL-35, a double-edged sword in cancer. J Cell Biochem. 2020;121(3):2064–2076.
  • Teymouri M, Pirro M, Fallarino F, et al. IL-35, a hallmark of immune-regulation in cancer progression, chronic infections and inflammatory diseases. Int J Cancer. 2018;143(9):2105–2115.
  • Mirlekar B, Pylayeva-Gupta Y. IL-12 family cytokines in cancer and immunotherapy. Cancers (Basel). 2021;13(2):167.
  • Wu H, Li P, Shao N, et al. Aberrant expression of treg-associated cytokine IL-35 along with IL-10 and TGF-beta in acute myeloid leukemia. Oncol Lett. 2012;3(5):1119–1123.
  • Wang J, Tao Q, Wang H, et al. Elevated IL-35 in bone marrow of the patients with acute myeloid leukemia. Hum Immunol. 2015;76(9):681–686.
  • Ahmed HA, Maklad AM, Khaled SA, et al. Interleukin-27 and interleukin-35 in de novo acute myeloid leukemia: expression and significance as biological markers. J Blood Med. 2019;10:341–349.
  • Abbas AK, Trotta E, Simeonov DR, et al. Revisiting IL-2: biology and therapeutic prospects. Sci Immunol. 2018;3(25):eaat1482.
  • Hernandez R, Põder J, LaPorte K, et al. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat Rev Immunol. 2022;22(10):614–628.
  • Yang Y, Lundqvist A. Immunomodulatory effects of IL-2 and IL-15; implications for cancer immunotherapy. Cancers. 2020;12(12):3586.
  • Zhou P. Emerging mechanisms and applications of low-dose IL-2 therapy in autoimmunity. Cytokine Growth Factor Rev. 2022;67:80–88.
  • Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol. 2018;18(10):648–659.
  • Apert C, Romagnoli P, van Meerwijk JPM. IL-2 and IL-15 dependent thymic development of Foxp3-expressing regulatory T lymphocytes. Protein Cell. 2018;9(4):322–332.
  • Jin D, Jiang Y, Chang L, et al. New therapeutic strategies based on biasing IL-2 mutants for cancers and autoimmune diseases. Int Immunopharmacol. 2022;110:108935.
  • Mi R, Chen L, Wang X, et al. A retrospective study on effectiveness of combined recombinant human interferon-alpha-1b, interleukin-2, and thalidomide for the treatment of acute myeloid leukemia in various disease states. Ann Transl Med. 2022;10(24):1382.
  • Mi R, Chen L, Yang H, et al. Combined use of interferon alpha-1b, interleukin-2, and thalidomide to reverse the AML1-ETO fusion gene in acute myeloid leukemia. Ann Hematol. 2021;100(10):2593–2601.
  • Cheng C, Mi R, Li D, et al. Lenalidomide combined with interferon α-1b and interleukin-2 in the treatment of 21 cases of acute myeloid leukemia. Turk J Haematol. 2021;38(3):230–232.
  • Zeng Q, Xiang B, Liu Z. Autologous hematopoietic stem cell transplantation followed by interleukin-2 for adult acute myeloid leukemia patients with favorable or intermediate risk after complete remission. Ann Hematol. 2022;101(8):1711–1718.
  • Stein AS, O'Donnell MR, Slovak ML, et al. Interleukin-2 after autologous stem-cell transplantation for adult patients with acute myeloid leukemia in first complete remission. J Clin Oncol. 2003;21(4):615–623.
  • Nilsson MS, Hallner A, Brune M, et al. Immunotherapy with HDC/IL-2 may be clinically efficacious in acute myeloid leukemia of normal karyotype. Hum Vaccin Immunother. 2020;16(1):109–111.
  • Buyse M, Squifflet P, Lange BJ, et al. Individual patient data meta-analysis of randomized trials evaluating IL-2 monotherapy as remission maintenance therapy in acute myeloid leukemia. Blood. 2011;117(26):7007–7013.
  • Howard M, Farrar J, Hilfiker M, et al. Identification of a T cell-derived b cell growth factor distinct from interleukin 2. J Exp Med. 1982;155(3):914–923.
  • Yokota T, Otsuka T, Mosmann T, et al. Isolation and characterization of a human interleukin cDNA clone, homologous to mouse B-cell stimulatory factor 1, that expresses B-cell- and T-cell-stimulating activities. Proc Natl Acad Sci U S A. 1986;83(16):5894–5898.
  • Kubo M. The role of IL-4 derived from follicular helper T (TFH) cells and type 2 helper T (TH2) cells. Int Immunol. 2021;33(12):717–722.
  • Keegan AD, Leonard WJ, Zhu J. Recent advances in understanding the role of IL-4 signaling. Fac Rev. 2021;10:71.
  • Dubin C, Del Duca E, Guttman-Yassky E. The IL-4, IL-13 and IL-31 pathways in atopic dermatitis. Expert Rev Clin Immunol. 2021;17(8):835–852.
  • Iwaszko M, Biały S, Bogunia-Kubik K. Significance of interleukin (IL)-4 and IL-13 in inflammatory arthritis. Cells. 2021;10(11):3000.
  • Shi J, Song X, Traub B, et al. Involvement of IL-4, IL-13 and their receptors in pancreatic cancer. IJMS. 2021;22(6):2998.
  • Gao A, Gong Y, Zhu C, et al. Bone marrow endothelial cell-derived interleukin-4 contributes to thrombocytopenia in acute myeloid leukemia. Haematologica. 2019;104(10):1950–1961.
  • Briukhovetska D, Dorr J, Endres S, et al. Interleukins in cancer: from biology to therapy. Nat Rev Cancer. 2021;21(8):481–499.
  • Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol. 2022;43(10):833–847.
  • Waldmann TA. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 2018;10(12):a028472.
  • Zhang S, Zhao J, Bai X, et al. Biological effects of IL-15 on immune cells and its potential for the treatment of cancer. Int Immunopharmacol. 2021;91:107318.
  • Choi YJ, Lee H, Kim JH, et al. CD5 suppresses IL-15-Induced proliferation of human memory CD8(+) T cells by inhibiting mTOR pathways. J Immunol. 2022;209(6):1108–1117.
  • Felices M, Wesley E, Bendzick LE, et al. Reverse translation identifies the synergistic role of immune checkpoint blockade and IL-15 to enhance immunotherapy of ovarian cancer. Cancer Immunol Res. 2023;11Feb 20. (5):674–686.
  • Wang X, Zhao XY. Transcription factors associated with IL-15 cytokine signaling during NK cell development. Front Immunol. 2021;12:610789.
  • Bindea G, Mlecnik B, Galon J. Expand to shield: IL-15 and in situ lymphocytic proliferation. Oncoimmunology. 2021;10(1):1886726.
  • Fernandez RA, Mayoral JE, Pierre-Louis L, et al. Improving NK cell function in multiple myeloma with NKTR-255, a novel polymer-conjugated human IL-15. Blood Adv. 2023;7(1):9–19.
  • Rettinger E, Meyer V, Kreyenberg H, et al. Cytotoxic capacity of IL-15-Stimulated Cytokine-Induced killer cells against human acute myeloid leukemia and rhabdomyosarcoma in humanized preclinical mouse models. Front Oncol. 2012;2:32.
  • Szczepanski MJ, Szajnik M, Welsh A, et al. Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors. Cancer Immunol Immunother. 2010;59(1):73–79.
  • Bou-Tayeh B, Laletin V, Salem N, et al. Chronic IL-15 stimulation and impaired mTOR signaling and metabolism in natural killer cells during acute myeloid leukemia. Front Immunol. 2021;12:730970.
  • Rallis K, Corrigan A, Dadah H, et al. IL-10 in cancer: an essential thermostatic regulator between homeostatic immunity and inflammation - a comprehensive review. Future Oncol. 2022;18(29):3349–3365.
  • Bedke T, Muscate F, Soukou S, et al. Title: IL-10-producing T cells and their dual functions. Semin Immunol. 2019;44:101335.
  • Zhang H, Kuchroo V. Epigenetic and transcriptional mechanisms for the regulation of IL-10. Semin Immunol. 2019;44:101324.
  • Jimbu L, Mesaros O, Neaga A, et al. The potential advantage of targeting both PD-L1/PD-L2/PD-1 and IL-10-IL-10R pathways in acute myeloid leukemia. Pharmaceuticals (Basel). 2021;14(11):1105.
  • Chenjiao Y, Zili F, Haibin C, et al. IL-10 promoter polymorphisms affect IL-10 production and associate with susceptibility to acute myeloid leukemia. Pharmazie. 2013;68(3):201–206.
  • Stevens A, Horton T, Glasser C, et al. IL-10 and TNFα are associated with decreased survival in low-risk pediatric acute myeloid leukemia; a children’s oncology group report. Pediatr Hematol Oncol. 2023;40(2):147–158.
  • Oft M. Immune regulation and cytotoxic T cell activation of IL-10 agonists - Preclinical and clinical experience. Semin Immunol. 2019;44:101325.
  • Fabbi M, Carbotti G, Ferrini S. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J Leukoc Biol. 2015;97(4):665–675.
  • Vecchie A, Bonaventura A, Toldo S, et al. IL-18 and infections: is there a role for targeted therapies? J Cell Physiol. 2021;236(3):1638–1657.
  • Thomas JM, Huuskes BM, Sobey CG, et al. The IL-18/IL-18R1 signalling axis: diagnostic and therapeutic potential in hypertension and chronic kidney disease. Pharmacol Ther. 2022;239:108191.
  • Prasinou M, Smith R, Vrettos A, et al. The role of IL-18 in behcet’s disease; a potential therapeutic target. Autoimmun Rev. 2020;19(9):102613.
  • Wang H, Hua M, Wang S, et al. Genetic polymorphisms of IL-18 rs1946518 and IL-1beta rs16944 are associated with prognosis and survival of acute myeloid leukemia. Inflamm Res. 2017;66(3):249–258.
  • Jia Y, Zhang C, Hua M, et al. Aberrant NLRP3 inflammasome associated with aryl hydrocarbon receptor potentially contributes to the imbalance of T-helper cells in patients with acute myeloid leukemia. Oncol Lett. 2017;14(6):7031–7044.
  • Borgia F, Custurone P, Li Pomi F, et al. IL-33 and IL-37: a possible axis in skin and allergic diseases. IJMS. 2022;24(1):372.
  • Aggeletopoulou I, Tsounis EP, Triantos C. Molecular mechanisms underlying IL-33-Mediated inflammation in inflammatory bowel disease. IJMS. 2022;24(1):623.
  • Jou E, Rodriguez-Rodriguez N, McKenzie ANJ. Emerging roles for IL-25 and IL-33 in colorectal cancer tumorigenesis. Front Immunol. 2022;13:981479.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.