1,142
Views
0
CrossRef citations to date
0
Altmetric
Letters to the Editor

Olverembatinib for myeloid/lymphoid neoplasm associated with eosinophilia and FGFR1 rearrangement

, , , , , , , , , ORCID Icon, , , & show all
Pages 1605-1610 | Received 28 Nov 2023, Accepted 06 Mar 2023, Published online: 24 Jun 2023

References

  • Khoury JD, Solary E, Abla O, et al. The 5th edition of the world health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022; 36(7):1703–1719. doi: 10.1038/s41375-022-01613-1.
  • Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood. 2017;129(6):704–714. doi: 10.1182/blood-2016-10-695973.
  • Chen M, Wang K, Cai X, et al. Myeloid/lymphoid neoplasm with CEP110-FGFR1 fusion: an analysis of 16 cases show common features and poor prognosis. Hematology. 2021; 26(1):153–159. doi: 10.1080/16078454.2020.1854493.
  • Umino K, Fujiwara SI, Ikeda T, et al. Clinical outcomes of myeloid/lymphoid neoplasms with fibroblast growth factor receptor-1 (FGFR1) rearrangement. Hematology. 2018; 23(8):470–477. doi: 10.1080/10245332.2018.1446279.
  • Dhillon S. Olverembatinib: first approval. Drugs. 2022; 82(4):469–475. doi: 10.1007/s40265-022-01680-9.
  • Jiang Q, Li Z, Qin Y, et al. Olverembatinib (HQP1351), a well-tolerated and effective tyrosine kinase inhibitor for patients with T315I-mutated chronic myeloid leukemia: results of an open-label, multicenter phase 1/2 trial. J Hematol Oncol. 2022; 15(1):113. doi: 10.1186/s13045-022-01334-z.
  • Wang Y, Zhang L, Tang X, et al. GZD824 as a FLT3, FGFR1 and PDGFRα inhibitor against leukemia in vitro and in vivo. Transl Oncol. 2020; 13(4):100766. doi: 10.1016/j.tranon.2020.100766.
  • Qu SQ, Wang Y, Sun XJ. [FIP1L1-PDGFRA positive chronic eosinophilic leukemia with imatinib-resistant T674I mutant of PDGFRA gene: a case report and literature review]. Zhonghua Xue Ye Xue Za Zhi. 2013; 34(2):159–161.
  • Zhang Y, Qu S, Wang Q, et al. A novel fusion of PDGFRB to TSC1, an intrinsic suppressor of mTOR-signaling pathway, in a chronic eosinophilic leukemia patient with t(5;9)(q32;q34). Leuk Lymphoma. 2018; 59(10):2506–2508. doi: 10.1080/10428194.2018.1427855.
  • Alves R, Gonçalves AC, Rutella S, et al. Resistance to tyrosine kinase inhibitors in chronic myeloid leukemia-from molecular mechanisms to clinical relevance. Cancers. 2021; 13(19):4820. doi: 10.3390/cancers13194820.
  • Ren X, Pan X, Zhang Z, et al. Identification of GZD824 as an orally bioavailable inhibitor that targets phosphorylated and nonphosphorylated breakpoint cluster region-Abelson (Bcr-Abl) kinase and overcomes clinically acquired mutation-induced resistance against imatinib. J Med Chem. 2013; 56(3):879–894. doi: 10.1021/jm301581y.
  • Jiang K, Tang X, Guo J, et al. GZD824 overcomes FGFR1-V561F/M mutant resistance in vitro and in vivo. Cancer Med. 2021; 10(14):4874–4884. doi: 10.1002/cam4.4041.
  • Lin Q, Chen X, Qu L, et al. Characterization of the cholangiocarcinoma drug pemigatinib against FGFR gatekeeper mutants. Commun Chem. 2022; 5(1):100. doi: 10.1038/s42004-022-00718-z.
  • Dreyling MH, Schrader K, Fonatsch C, et al. MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Blood. 1998; 91(12):4662–4667.
  • Ren M, Qin H, Kitamura E, et al. Dysregulated signaling pathways in the development of CNTRL-FGFR1-induced myeloid and lymphoid malignancies associated with FGFR1 in human and mouse models. Blood. 2013; 122(6):1007–1016. doi: 10.1182/blood-2013-03-489823.