487
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Role of IL8 in myeloid malignancies

, , , , , , & show all
Pages 1742-1751 | Received 10 Mar 2023, Accepted 25 Jun 2023, Published online: 19 Jul 2023

References

  • Elias HK, Schinke C, Bhattacharyya S, et al. Stem cell origin of myelodysplastic syndromes. Oncogene. 2014;33(44):5139–5150. doi:10.1038/onc.2013.520
  • Shastri A, Will B, Steidl U, et al. Stem and progenitor cell alterations in myelodysplastic syndromes. Blood. 2017;129(12):1586–1594. doi:10.1182/blood-2016-10-696062
  • Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2011;29(5):591–599. doi:10.1200/JCO.2010.31.0904
  • Jordan CT. Searching for leukemia stem cells–not yet the end of the road? Cancer Cell. 2006;10(4):253–254. doi:10.1016/j.ccr.2006.09.010
  • Corces-Zimmerman MR, Majeti R. Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis. Leukemia. 2014;28(12):2276–2282. doi:10.1038/leu.2014.211
  • Troy JD, Atallah E, Geyer JT, et al. Myelodysplastic syndromes in the United States: an update for clinicians. Ann Med. 2014;46(5):283–289. doi:10.3109/07853890.2014.898863
  • Will B, Zhou L, Vogler TO, et al. Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood. 2012;120(10):2076–2086. doi:10.1182/blood-2011-12-399683
  • Craddock C, Quek L, Goardon N, et al. Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia. 2013;27(5):1028–1036. doi:10.1038/leu.2012.312
  • Copelan EA, et al. Recent advances in hematopoietic cell transplantation in myelodysplastic syndrome. Discov Med. 2017;24(130):51–57.
  • Moudra A, Hubackova S, Machalova V, et al. Dynamic alterations of bone marrow cytokine landscape of myelodysplastic syndromes patients treated with 5-azacytidine. Oncoimmunology. 2016;5(10):e1183860. doi:10.1080/2162402X.2016.1183860
  • Guzman ML, Neering SJ, Upchurch D, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98(8):2301–2307. doi:10.1182/blood.v98.8.2301
  • Kagoya Y, Yoshimi A, Kataoka K, et al. Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity. J Clin Invest. 2014;124(2):528–542. doi:10.1172/JCI68101
  • Fang J, Barker B, Bolanos L, et al. Myeloid malignancies with chromosome 5q deletions acquire a dependency on an intrachromosomal NF-κB gene network. Cell Rep. 2014;8(5):1328–1338. doi:10.1016/j.celrep.2014.07.062
  • Keutgens A, Robert I, Viatour P, et al. Deregulated NF-kappaB activity in haematological malignancies. Biochem Pharmacol. 2006;72(9):1069–1080. doi:10.1016/j.bcp.2006.06.011
  • Manna SK, Ramesh GT. Interleukin-8 induces nuclear transcription factor-kappaB through a TRAF6-dependent pathway. J Biol Chem. 2005;280(8):7010–7021. doi:10.1074/jbc.M410994200
  • Shahrabi S, Khosravi A, Shahjahani M, et al. Genetics and epigenetics of myelodysplastic syndromes and response to drug therapy: new insights. Oncol Rev. 2016;10(2):311. doi:10.4081/oncol.2016.311
  • Selma DS, Sunil BR, Meenakshi S. Immune dysregulation in MDS: the role of cytokines and immune cells. In F. Ota, editor. Recent developments in myelodysplastic syndromes. Rijeka: IntechOpen; 2019. p. Ch. 4.
  • Kupsa T, Horacek JM, Jebavy L. The role of cytokines in acute myeloid leukemia: a systematic review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2012;156(4):291–301. doi:10.5507/bp.2012.108
  • Hemmati S, Haque T, Gritsman K. Inflammatory signaling pathways in preleukemic and leukemic stem cells. Front Oncol. 2017;7:265. doi:10.3389/fonc.2017.00265
  • Varney ME, Melgar K, Niederkorn M, et al. Deconstructing innate immune signaling in myelodysplastic syndromes. Exp Hematol. 2015;43(8):587–598. doi:10.1016/j.exphem.2015.05.016
  • Barreyro L, Chlon TM, Starczynowski DT. Chronic immune response dysregulation in MDS pathogenesis. Blood. 2018;132(15):1553–1560. doi:10.1182/blood-2018-03-784116
  • David JM, Dominguez C, Hamilton DH, et al. The IL-8/IL-8R axis: a double agent in tumor immune resistance. Vaccines (Basel). 2016;4(3):22. doi:10.3390/vaccines4030022
  • Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14(21):6735–6741. doi:10.1158/1078-0432.CCR-07-4843
  • Tobler A, Moser B, Dewald B, et al. Constitutive expression of interleukin-8 and its receptor in human myeloid and lymphoid leukemia. Blood. 1993;82(8):2517–2525. doi:10.1182/blood.V82.8.2517.2517
  • Gonzalez-Aparicio M, Alfaro C. Significance of the IL-8 pathway for immunotherapy. Hum Vaccin Immunother. 2020;16(10):2312–2317. doi:10.1080/21645515.2019.1696075
  • Cheng Y, Ma X-L, Wei Y-Q, et al. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer. 2019;1871(2):289–312. doi:10.1016/j.bbcan.2019.01.005
  • Pievani A, Biondi M, Tomasoni C, et al. Location first: targeting acute myeloid leukemia within its niche. J Clin Med. 2020;9(5):1513.
  • Shafat MS, Gnaneswaran B, Bowles KM, et al. The bone marrow microenvironment - Home of the leukemic blasts. Blood Rev. 2017;31(5):277–286. doi:10.1016/j.blre.2017.03.004
  • Kuett A, Rieger C, Perathoner D, et al. IL-8 as mediator in the microenvironment-leukaemia network in acute myeloid leukaemia. Sci Rep. 2015;5(1):18411. doi:10.1038/srep18411
  • Cheng J, Li Y, Liu S, et al. CXCL8 derived from mesenchymal stromal cells supports survival and proliferation of acute myeloid leukemia cells through the PI3K/AKT pathway. FASEB J. 2019;33(4):4755–4764. doi:10.1096/fj.201801931R
  • Ladikou EE, Sivaloganathan H, Pepper A, et al. Acute myeloid leukaemia in its niche: the bone marrow microenvironment in acute myeloid leukaemia. Curr Oncol Rep. 2020;22(3):27. doi:10.1007/s11912-020-0885-0
  • Bruserud Ø, Ryningen A, Wergeland L, et al. Osteoblasts increase proliferation and release of pro-angiogenic interleukin 8 by native human acute myelogenous leukemia blasts. Haematologica. 2004;89(4):391–402.
  • Parmar A, Marz S, Rushton S, et al. Stromal niche cells protect early leukemic FLT3-ITD + progenitor cells against first-generation FLT3 tyrosine kinase inhibitors. Cancer Res. 2011;71(13):4696–4706. doi:10.1158/0008-5472.CAN-10-4136
  • Jacamo R, Chen Y, Wang Z, et al. Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood. 2014;123(17):2691–2702. doi:10.1182/blood-2013-06-511527
  • Winkler IG, Barbier V, Nowlan B, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18(11):1651–1657. doi:10.1038/nm.2969
  • Almorish MAW, Al-Kahiry WMA, Rabie MAF, et al. Interleukin-8 as a surrogate marker in risk stratification of patients with acute myeloid leukemia. J Blood Lymph. 2019;9:240.
  • Schinke C, Giricz O, Li W, et al. IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells. Blood. 2015;125(20):3144–3152. doi:10.1182/blood-2015-01-621631
  • Lasry A, Nadorp B, Fornerod M, et al. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. Nat Cancer. 2023;4(1):27–42. doi:10.1038/s43018-022-00480-0
  • Parmar K, Mauch P, Vergilio J-A, et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A. 2007;104(13):5431–5436. doi:10.1073/pnas.0701152104
  • Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6(2):93–106. doi:10.1038/nri1779
  • Goulard M, Dosquet C, Bonnet D. Role of the microenvironment in myeloid malignancies. Cell Mol Life Sci. 2018;75(8):1377–1391. doi:10.1007/s00018-017-2725-4
  • Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–334. doi:10.1038/nature12984
  • Yu VW, Scadden DT. Heterogeneity of the bone marrow niche. Curr Opin Hematol. 2016;23(4):331–338. doi:10.1097/MOH.0000000000000265
  • Cogle CR, Goldman DC, Madlambayan GJ, et al. Functional integration of acute myeloid leukemia into the vascular niche. Leukemia. 2014;28(10):1978–1987. doi:10.1038/leu.2014.109
  • Vijay V, Miller R, Vue GS, et al. Interleukin-8 blockade prevents activated endothelial cell mediated proliferation and chemoresistance of acute myeloid leukemia. Leuk Res. 2019;84:106180. doi:10.1016/j.leukres.2019.106180
  • Bruserud Ø, Ryningen A, Olsnes AM, et al. Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells. Haematologica. 2007;92(3):332–341. doi:10.3324/haematol.10148
  • Zahr AA, Salama ME, Carreau N, et al. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica. 2016;101(6):660–671. doi:10.3324/haematol.2015.141283
  • Gleitz HFE, Dugourd AJF, Leimkühler NB, et al. Increased CXCL4 expression in hematopoietic cells links inflammation and progression of bone marrow fibrosis in MPN. Blood. 2020;136(18):2051–2064. doi:10.1182/blood.2019004095
  • Hasselbalch HC. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine Growth Factor Rev. 2013;24(2):133–145. doi:10.1016/j.cytogfr.2013.01.004
  • Martyré MC, Romquin N, Le Bousse-Kerdiles MC, et al. Transforming growth factor-beta and megakaryocytes in the pathogenesis of idiopathic myelofibrosis. Br J Haematol. 1994;88(1):9–16. pdoi:10.1111/j.1365-2141.1994.tb04970.x
  • Yanagida M, Ide Y, Imai A, et al. The role of transforming growth factor-beta in PEG-rHuMGDF-induced reversible myelofibrosis in rats. Br J Haematol. 1997;99(4):739–745. doi:10.1046/j.1365-2141.1997.4843288.x
  • Dunbar AJ, Kim D, Lu M, et al. CXCL8/CXCR2 signaling mediates bone marrow fibrosis and represents a therapeutic target in myelofibrosis. Blood. 2023;141(20):2508–2519. blood. doi:10.1182/blood.2022015418
  • Wong WJ, Baltay M, Getz A, et al. Gene expression profiling distinguishes prefibrotic from overtly fibrotic myeloproliferative neoplasms and identifies disease subsets with distinct inflammatory signatures. PLoS One. 2019;14(5):e0216810. doi:10.1371/journal.pone.0216810
  • Lu Y, Chen JJ, Mu L, et al. High-Throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal Chem. 2013;85(4):2548–2556. doi:10.1021/ac400082e
  • Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270. doi:10.1371/journal.pmed.0030270
  • Fisher DAC, Miner CA, Engle EK, et al. Cytokine production in myelofibrosis exhibits differential responsiveness to JAK-STAT, MAP kinase, and NFκB signaling. Leukemia. 2019;33(8):1978–1995. doi:10.1038/s41375-019-0379-y
  • Starczynowski DT, Karsan A. Innate immune signaling in the myelodysplastic syndromes. Hematol Oncol Clin North Am. 2010;24(2):343–359. doi:10.1016/j.hoc.2010.02.008
  • Zhao JL, Ma C, O’Connell RM, et al. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell. 2014;14(4):445–459. doi:10.1016/j.stem.2014.01.007
  • Leimkühler NB, Gleitz HFE, Ronghui L, et al. Heterogenous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell. 2021;28:637–652.
  • Zambetti NA, Ping Z, Chen S, et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell. 2016;19(5):613–627. doi:10.1016/j.stem.2016.08.021
  • Harrison C, Kiladjian J-J, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787–798. doi:10.1056/NEJMoa1110556
  • Kleppe M, Koche R, Zou L, et al. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms. Cancer Cell. 2018;33(1):29–43.e7. doi:10.1016/j.ccell.2017.11.009
  • Fisher DAC, Malkova O, Engle EK, et al. Mass cytometry analysis reveals hyperactive NF Kappa B signaling in myelofibrosis and secondary acute myeloid leukemia. Leukemia. 2017;31(9):1962–1974. doi:10.1038/leu.2016.377
  • Van Etten RA. Aberrant cytokine signaling in leukemia. Oncogene. 2007;26(47):6738–6749. doi:10.1038/sj.onc.1210758
  • de Matos AG, Ribeiro Junior HL, de Paula Borges D, et al. Interleukin-8 and nuclear factor kappa B are increased and positively correlated in myelodysplastic syndrome. Med Oncol. 2017;34(10):168. doi:10.1007/s12032-017-1023-1
  • Gañán-Gómez I, Wei Y, Starczynowski DT, et al. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia. 2015;29(7):1458–1469. doi:10.1038/leu.2015.69
  • Zahid MF, Patnaik MM, Gangat N, et al. Insight into the molecular pathophysiology of myelodysplastic syndromes: targets for novel therapy. Eur J Haematol. 2016;97(4):313–320. doi:10.1111/ejh.12771
  • Glenthøj A, Ørskov AD, Hansen JW, et al. Immune mechanisms in myelodysplastic syndrome. Int J Mol Sci. 2016;17(6):944.
  • Wolach O, Stone R. Autoimmunity and inflammation in myelodysplastic syndromes. Acta Haematol. 2016;136(2):108–117. doi:10.1159/000446062
  • Palangat M, Anastasakis DG, Fei DL, et al. The splicing factor U2AF1 contributes to cancer progression through a noncanonical role in translation regulation. Genes Dev. 2019;33(9-10):482–497. doi:10.1101/gad.319590.118
  • Li Y, Cheng J, Li Y, et al. CXCL8 is associated with the recurrence of patients with acute myeloid leukemia and cell proliferation in leukemia cell lines. Biochem Biophys Res Commun. 2018;499(3):524–530. doi:10.1016/j.bbrc.2018.03.181
  • Zhou J, Ching YQ, Chng WJ. Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target. Oncotarget. 2015;6(8):5490–5500. doi:10.18632/oncotarget.3545
  • White JR, Lee JM, Young PR, et al. Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem. 1998;273(17):10095–10098. doi:10.1074/jbc.273.17.10095
  • Ruffini PA. The CXCL8-CXCR1/2 axis as a therapeutic target in breast cancer stem-like cells. Front Oncol. 2019;9:40. doi:10.3389/fonc.2019.00040
  • Busch-Petersen J. Small molecule antagonists of the CXCR2 and CXCR1 chemokine receptors as therapeutic agents for the treatment of inflammatory diseases. Curr Top Med Chem. 2006;6(13):1345–1352. doi:10.2174/15680266106061345
  • Dahal S, Chaudhary P, Jung Y-S, et al. Megakaryocyte-derived IL-8 acts as a paracrine factor for prostate cancer aggressiveness through CXCR2 activation and antagonistic AR downregulation. Biomol Ther (Seoul). 2023;31(2):210–218. doi:10.4062/biomolther.2023.005
  • Nicholls DJ, Wiley K, Dainty I, et al. Pharmacological characterization of AZD5069, a slowly reversible CXC chemokine receptor 2 antagonist. J Pharmacol Exp Ther. 2015;353(2):340–350. doi:10.1124/jpet.114.221358
  • Sallman DA, DeZern AE, Gayle AA, et al. Phase 1 results of the first-in-class CXCR1/2 inhibitor SX-682 in patients with hypomethylating agent failure myelodysplastic syndromes. Blood. 2022;140(Suppl 1):2070–2072. doi:10.1182/blood-2022-159774
  • Huang S, Mills L, Mian B, et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol. 2002;161(1):125–134. doi:10.1016/S0002-9440(10)64164-8
  • Mian BM, et al. Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB. Clin Cancer Res. 2003;9(8):3167–3175.
  • Gabellini C, Trisciuoglio D, Desideri M, et al. Functional activity of CXCL8 receptors, CXCR1 and CXCR2, on human malignant melanoma progression. Eur J Cancer. 2009;45(14):2618–2627. doi:10.1016/j.ejca.2009.07.007
  • Bilusic M, Heery CR, Collins JM, et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J Immunother Cancer. 2019;7(1):240. doi:10.1186/s40425-019-0706-x
  • Dominguez C, McCampbell KK, David JM, et al. Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight. 2017;2(21):e94296. doi:10.1172/jci.insight.94296

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.