227
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The altered metabolic pathways of diffuse large B-cell lymphoma not otherwise specified

ORCID Icon, , , , , , , , , , , , , , , , , , , , , & ORCID Icon show all
Pages 1771-1781 | Received 13 Jan 2023, Accepted 27 Jun 2023, Published online: 18 Jul 2023

References

  • Sehn LH, Salles G. Diffuse large B-Cell lymphoma. N Engl J Med. 2021;4:842–858.
  • Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–511. doi:10.1038/35000501
  • Scott DW, Mottok A, Ennishi D, et al. Prognostic significance of diffuse large B-cell lymphoma cell of origin determined by digital gene expression in formalin-fixed paraffin-embedded tissue biopsies. J Clin Oncol. 2015;33(26):2848–2856. Sep 10doi:10.1200/JCO.2014.60.2383
  • Lacy SE, Barrans SL, Beer PA, et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: a haematological malignancy research network report. Blood. 2020;135(20):1759–1771. doi:10.1182/blood.2019003535
  • Wright GW, Huang DW, Phelan JD, et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 2020;37(4):551–568.e14. doi:10.1016/j.ccell.2020.03.015
  • Pedrosa L, Fernández-Miranda I, Pérez-Callejo D, et al. Proposal and validation of a method to classify genetic subtypes of diffuse large B cell lymphoma. Sci Rep. 2021;11(1):1886. doi:10.1038/s41598-020-80376-0
  • Alaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36(7):1720–1748. doi:10.1038/s41375-022-01620-2
  • Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–282. doi:10.1182/blood-2003-05-1545
  • Meyer PN, Fu K, Greiner TC, et al. Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab. J Clin Oncol. 2011;29(2):200–207. doi:10.1200/JCO.2010.30.0368
  • Gutiérrez-García G, Cardesa-Salzmann T, Climent F, et al. Gene-expression profiling and not immunophenotypic algorithms predicts prognosis in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Blood. 2011;117(18):4836–4843. doi:10.1182/blood-2010-12-322362
  • Castillo JJ, Beltran BE, Song MK, et al. The hans algorithm is not prognostic in patients with diffuse large B-cell lymphoma treated with R-CHOP. Leuk Res. 2012;36(4):413–417. doi:10.1016/j.leukres.2011.12.012
  • Song JY, Dirnhofer S, Piris MA, et al. Difuse large B‑cell lymphomas, not otherwise specifed, and emerging entities. Virchows Arch. 2023;482 (1):179–192. doi:10.1007/s00428-022-03466-6
  • Xiong J, Wang L, Fei X-C, et al. MYC is a positive regulator of choline metabolism and impedes mitophagy-dependent necroptosis in diffuse large B-cell lymphoma. Blood Cancer J. 2017;7(7):e0. doi:10.1038/bcj.2017.61
  • Barré FPY, Claes BSR, Dewez F, et al. Specific lipid and metabolic profiles of R‑CHOP-resistant diffuse large B‑cell lymphoma elucidated by matrix-assisted laser desorption ionization mass spectrometry imaging and in vivo imaging. Anal Chem. 2018;90(24):14198–14206. doi:10.1021/acs.analchem.8b02910
  • Gogia A, Nair S, Arora S, et al. Impact of cell-of-origin on outcome of patients with diffuse large B-cell lymphoma treated with uniform R-CHOP protocol: a single-center retrospective analysis from North India. Front Oncol. 2021;11:770747. doi:10.3389/fonc.2021.770747
  • Schwarzfischer P, Reinders J, Dettmer K, et al. Comprehensive metaboproteomics of Burkitt’s and diffuse large B‑cell lymphoma cell lines and primary tumor tissues reveals distinct differences in pyruvate content and metabolism. J Proteome Res. 2017;16(3):1105–1120. doi:10.1021/acs.jproteome.6b00164
  • Duarte GHB, Fernandes AMAP, Silva AAR, et al. Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers. Anal Bioanal Chem. 2020;412(27):7469–7480. doi:10.1007/s00216-020-02881-5
  • Barberini L, Noto A, Fattuoni C, Satta G, Zucca M, Cabras MG, et al. The metabolomic profile of lymphoma subtypes: a pilot study. Molecules. 2019;24(13):2367. doi:10.3390/molecules24132367
  • Gascoyne RD, Campo E, Jaffe ES, et al. Diffuse large B-cell lymphoma, NOS. In: Swerdlow SH, Campo E, Harris NL, eds. World health organization classification of tumours of hematopoietic and lymphoid tissues. Rev., 4th ed., Lyon, France: International Agency for Research on Cancer; 2017:291–297.
  • Kluin PM, Harris NL, Stein H, et al. High grade B-cell lymphoma. In: swerdlow SH, Campo E, Harris NL, eds. World health organization classification of tumours of hematopoietic and lymphoid tissues. Rev., 4th ed., Lyon, France: International Agency for Research on Cancer; 2017:335–341.
  • Rodrigues-Fernandes CI, Gonçalves Junior A, Soares CD, et al. Oral and oropharyngeal diffuse large B-cell lymphoma and high-grade B-cell lymphoma: a clinicopathologic and prognostic study of 69 cases. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;131(4):452–462.e4. doi:10.1016/j.oooo.2020.11.005
  • Libiseller G, Dvorzak M, Kleb U, et al. IPO: a tool for automated optimization of XCMS parameters. BMC Bioinf. 2015;16(1):1–10. doi:10.1186/s12859-015-0562-8
  • Domingo-Almenara X, Siuzdak G. Metabolomics data processing using XCMS. In S. Li editor. Computational methods and data analysis for metabolomics. Springer US; Berlin, Germany, 2020 p. 11–24.
  • Smith CA, Want EJ, O'Maille G, et al. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78(3):779–787. doi:10.1021/ac051437y
  • Pang Z, Chong J, Zhou G, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49(W1):W388–W396. doi:10.1093/nar/gkab382
  • Xia J, Wishart DS. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc. 2011;6(6):743–760. doi:10.1038/nprot.2011.319
  • Chong J, Wishart DS, Xia J. Using metaboanalyst 5.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinforma. 2019;68:1–128.
  • Gromski PS, Muhamadali H, Ellis DI, et al. A tutorial review: metabolomics and partial least squares-discriminant analysis–a marriage of convenience or a shotgun wedding. Anal Chim Acta. 2015;879:10–23. doi:10.1016/j.aca.2015.02.012
  • Li S, Park Y, Duraisingham S, et al. Predicting network activity from high throughput metabolomics. PLOS Comput Biol. 2013;9(7):e1003123. doi:10.1371/journal.pcbi.1003123
  • Arima K, Lau MC, Zhao M, et al. Metabolic profiling of formalin-fixed paraffin-embedded tissues discriminates normal colon from colorectal cancer. Mol Cancer Res. 2020;18(6):883–890. doi:10.1158/1541-7786.MCR-19-1091
  • Neef SK, Winter S, Hofmann U, et al. Optimized protocol for metabolomic and lipidomic profiling in formalin-fixed paraffin-embedded kidney tissue by LC-MS. Anal Chim Acta. 2020;1134:125–135. doi:10.1016/j.aca.2020.08.005
  • Bao X, Wu J, Shuch B, et al. Quantitative profiling of oncometabolites in frozen and formalin-fixed paraffin-embedded tissue specimens by liquid chromatography coupled with tandem mass spectrometry. Sci Rep. 2019;9(1):11238. doi:10.1038/s41598-019-47669-5
  • Yarla NS, Bishayee A, Sethi G, et al. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol. 2016;41:48–81.
  • Wang B, Wu L, Chen J, et al. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct Target Ther. 2021;6:94.
  • Xia X, Sadeghi L, Strååt K, et al. Intrinsic 5-lipoxygenase activity regulates migration and adherence of mantle cell lymphoma cells. Prostaglandins Other Lipid Mediat. 2021;156:106575. doi:10.1016/j.prostaglandins.2021.106575
  • Wang Q, Morris RJ, Bode AM, et al. Prostaglandin pathways: opportunities for cancer prevention and therapy. Cancer Res. 2022;82(6):949–965. doi:10.1158/0008-5472.CAN-21-2297
  • Jara-Gutiérrez Á, Baladrón V. The role of prostaglandins in different types of cancer. Cells. 2021;10(6):1487. doi:10.3390/cells10061487
  • Pandey VK, Amin PJ, Shankar BS. COX-2 inhibitor prevents tumor induced down regulation of classical DC lineage specific transcription factor Zbtb46 resulting in immunocompetent DC and decreased tumor burden. Immunol. Lett. 2017;184:23–33. doi:10.1016/j.imlet.2017.01.019
  • Runarsson G, Liu A, Mahshid Y, et al. Leukotriene B4 plays a pivotal role in CD40-dependent activation of chronic B lymphocytic leukemia cells. Blood. 2005;105(3):1274–1279. doi:10.1182/blood-2004-07-2546
  • Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med. 2014;72:76–90. doi:10.1016/j.freeradbiomed.2014.03.035
  • Park NY, Im S, Jiang Q. Different forms of vitamin E and metabolite 13'-carboxychromanols inhibit cyclooxygenase-1 and its catalyzed thromboxane in platelets, and tocotrienols and 13'-carboxychromanols are competitive inhibitors of 5-lipoxygenase. J Nutr Biochem. 2022;100:108884. doi:10.1016/j.jnutbio.2021.108884
  • Schain F, Schain D, Mahshid Y, et al. Differential expression of cysteinyl leukotriene receptor 1 and 15-lipoxygenase-1 in non-Hodgkin lymphomas. Clin Lymphoma Myeloma. 2008;8(6):340–347. doi:10.3816/CLM.2008.n.049
  • Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol. 2013;75(3):645–662. doi:10.1111/j.1365-2125.2012.04374.x
  • Aktaş S, Ercetin P, Altun Z, et al. Safety of eicosapentaenoic acid in cancer treatment: effect on cancer cells and chemotherapy in vitro. Nutr Cancer. 2021;73(4):568–571. doi:10.1080/01635581.2020.1781201
  • Bar-El Dadon S, Reifen R. Vitamin A and the epigenome. Crit Rev Food Sci Nutr. 2017;57(11):2404–2411. doi:10.1080/10408398.2015.1060940
  • Carazo A, Macáková K, Matoušová K, et al. Vitamin A update: forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients. 2021;13(5):1703. doi:10.3390/nu13051703
  • Jiang Q. Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. Free Radic Biol Med. 2022;179:375–387. doi:10.1016/j.freeradbiomed.2021.11.012
  • Morimoto Y, Ollberding NJ, Cooney RV, et al. Prediagnostic serum tocopherol levels and the risk of non-Hodgkin lymphoma: the multiethnic cohort. Cancer Epidemiol Biomarkers Prev. 2013;22(11):2075–2083. doi:10.1158/1055-9965.EPI-13-0522
  • Jiang Q. Natural forms of vitamin E and metabolites-regulation of cancer cell death and underlying mechanisms. IUBMB Life. 2019;71:495–506.
  • Sharma R, Vinayak M. Antioxidant a -tocopherol checks lymphoma promotion via regulation of expression of protein kinase C-alpha a and c-Myc genes and glycolytic metabolism. Leuk Lymphoma. 2012;53(6):1203–1210. doi:10.3109/10428194.2011.637213
  • Sharma R, Vinayak M. α-Tocopherol prevents lymphoma by improving antioxidant defence system of mice. Mol Biol Rep. 2013;40(2):839–849. doi:10.1007/s11033-012-2123-9
  • de Nigris F, Youssef T, Ciafré S, et al. Evidence for oxidative activation of c-Myc-dependent nuclear signaling in human coronary smooth muscle cells and in early lesions of Watanabe heritable hyperlipidemic rabbits: protective effects of vitamin E. Circulation. 2000;102(17):2111–2117. doi:10.1161/01.cir.102.17.2111
  • Calvisi DF, Ladu S, Hironaka K, et al. Vitamin E down-modulates iNOS and NADPH oxidase in c-Myc/TGF-alpha transgenic mouse model of liver cancer. J Hepatol. 2004;41(5):815–822. doi:10.1016/j.jhep.2004.07.030
  • Tamási V, Monostory K, Prough RA, et al. Role of xenobiotic metabolism in cancer: involvement of transcriptional and miRNA regulation of P450s. Cell Mol Life Sci. 2011;68(7):1131–1146. doi:10.1007/s00018-010-0600-7
  • Patterson AD, Gonzalez FJ, Idle JR. Xenobiotic metabolism: a view through the metabolometer. Chem Res Toxicol. 2010;23(5):851–860. doi:10.1021/tx100020p
  • Reszka E, Wasowicz W, Gromadzinska J. Genetic polymorphism of xenobiotic metabolising enzymes, diet and cancer susceptibility. Br J Nutr. 2006; 96(4):609–619.
  • Li W, Lu Z, Pan D, et al. Gene expression analysis reveals prognostic biomarkers of the tyrosine metabolism reprogramming pathway for prostate cancer. J Oncol. 2022;2022:5504173.
  • Kelly AD, Breitkopf SB, Yuan M, et al. Metabolomic profiling from formalin-fixed, paraffin- embedded tumor tissue using targeted LC/MS/MS: application in sarcoma. PLOS One. 2011;6(10):e25357. doi:10.1371/journal.pone.0025357
  • Cacciatore S, Zadra G, Bango C, et al. Metabolic profiling in formalin-fixed and paraffin-embedded prostate cancer tissues. Mol Cancer Res. 2017;15(4):439–447. doi:10.1158/1541-7786.MCR-16-0262
  • Bastos VC, Vitório JG, Martins-Chaves RR, et al. Age-related metabolic pathways changes in dental follicles: a pilot study. Front Oral Health. 2021;2:677731. doi:10.3389/froh.2021.677731

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.