144
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The effect of the plasma methotrexate concentration during high-dose methotrexate therapy in childhood acute lymphoblastic leukemia

ORCID Icon, , , , , , , , , , & show all
Pages 91-99 | Received 12 May 2023, Accepted 27 Sep 2023, Published online: 11 Oct 2023

References

  • Song Z, Hu Y, Liu S, et al. Medication therapy of high-dose methotrexate: an evidence-based practice guideline of the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society. Br J Clin Pharmacol. 2022;88(5):2456–2472. doi:10.1111/bcp.15134
  • Suthandiram S, Gan GG, Zain SM, et al. Effect of polymorphisms within methotrexate pathway genes on methotrexate toxicity and plasma levels in adults with hematological malignancies. Pharmacogenomics. 2014;15(11):1479–1494. doi:10.2217/pgs.14.97
  • Kager L, Cheok M, Yang W, et al. Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. J Clin Invest. 2005;115(1):110–117. doi:10.1172/JCI22477
  • Seidemann K, Book M, Zimmermann M, et al. MTHFR 677 (C–>T) polymorphism is not relevant for prognosis or therapy-associated toxicity in pediatric NHL: results from 484 patients of multicenter trial NHL-BFM 95. Ann Hematol. 2006;85(5):291–300. doi:10.1007/s00277-005-0072-2
  • Faganel Kotnik B, Grabnar I, Bohanec Grabar P, et al. Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol. 2011;67(10):993–1006. doi:10.1007/s00228-011-1046-z
  • Radtke S, Zolk O, Renner B, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood. 2013;121(26):5145–5153. doi:10.1182/blood-2013-01-480335
  • Zhu X, Li W, Zhu J, et al. Influence of MTHFR C677T and A1298C polymorphisms on the survival of pediatric patients with non-Hodgkin lymphoma. Leuk Lymphoma. 2021;62(10):2374–2382. doi:10.1080/10428194.2021.1927017
  • Lopez-Lopez E, Autry RJ, Smith C, et al. Pharmacogenomics of intracellular methotrexate polyglutamates in patients’ leukemia cells in vivo. J Clin Invest. 2020;130(12):6600–6615. doi:10.1172/JCI140797
  • Treviño LR, Shimasaki N, Yang W, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009;27(35):5972–5978. doi:10.1200/JCO.2008.20.4156
  • Liao C, Xu X, Shen D, et al. Minimal residual disease-guided risk restratification and therapy improves the survival of childhood acute lymphoblastic leukemia: experience from a tertiary children’s hospital in China. J Pediatr Hematol Oncol. 2019;41(6):e346–e354. doi:10.1097/MPH.0000000000001412
  • Jeha S, Pei D, Choi J, et al. Improved CNS control of childhood acute lymphoblastic leukemia without cranial irradiation: St Jude Total Therapy Study 16. J Clin Oncol. 2019;37(35):3377–3391. doi:10.1200/JCO.19.01692
  • Cwiklinska M, Czogala M, Kwiecinska K, et al. Polymorphisms of SLC19A1 80 G > A, MTHFR 677 C > T, and tandem TS repeats influence pharmacokinetics, acute liver toxicity, and vomiting in children with acute lymphoblastic leukemia treated with high doses of methotrexate. Front Pediatr. 2020;8:307. doi:10.3389/fped.2020.00307
  • Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, et al. A systematic review and meta-analysis of MTHFR polymorphisms in methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia. Pharmacogenomics J. 2013;13(6):498–506. doi:10.1038/tpj.2012.44
  • Umerez M, Gutierrez-Camino Á, Muñoz-Maldonado C, et al. MTHFR polymorphisms in childhood acute lymphoblastic leukemia: influence on methotrexate therapy. Pharmgenomics Pers Med. 2017;10:69–78. doi:10.2147/PGPM.S107047
  • Zahra FT, Nahid NA, Islam MR, et al. Pharmacogenetic variants in MTHFR gene are significant predictors of methotrexate toxicities in Bangladeshi patients with acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2020;20(2):e58–e65. doi:10.1016/j.clml.2019.11.020
  • den Hoed MA, Lopez-Lopez E, Te Winkel ML, et al. Genetic and metabolic determinants of methotrexate-induced mucositis in pediatric acute lymphoblastic leukemia. Pharmacogenomics J. 2015;15(3):248–254. doi:10.1038/tpj.2014.63
  • de Jonge R, Hooijberg JH, van Zelst BD, et al. Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood. 2005;106(2):717–720. doi:10.1182/blood-2004-12-4941
  • Hao Q, Song Y, Fang Q, et al. Effects of genetic polymorphisms on methotrexate levels and toxicity in Chinese patients with acute lymphoblastic leukemia. Blood Sci. 2023;5(1):32–38. doi:10.1097/BS9.0000000000000142
  • Yang FF, Xue TL, Gao C, et al. Effects of SLCO1B1 on elimination and toxicities of high-dose methotrexate in pediatric acute lymphoblastic leukemia. Pharmacogenomics. 2022;23(15):821–834. doi:10.2217/pgs-2022-0098
  • Li J, Wang XR, Zhai XW, et al. Association of SLCO1B1 gene polymorphisms with toxicity response of high dose methotrexate chemotherapy in childhood acute lymphoblastic leukemia. Int J Clin Exp Med. 2015;8(4):6109–6113.
  • Liu SG, Gao C, Zhang RD, et al. Polymorphisms in methotrexate transporters and their relationship to plasma methotrexate levels, toxicity of high-dose methotrexate, and outcome of pediatric acute lymphoblastic leukemia. Oncotarget. 2017;8(23):37761–37772. doi:10.18632/oncotarget.17781
  • Sterba J, Valík D, Bajciová V, et al. High-dose methotrexate and/or leucovorin rescue for the treatment of children with lymphoblastic malignancies: do we really know why, when and how. Neoplasma. 2005;52(6):456–463.
  • Camitta B, Mahoney D, Leventhal B, et al. Intensive intravenous methotrexate and mercaptopurine treatment of higher-risk non-T, non-B acute lymphocytic leukemia: a Pediatric Oncology Group Study. J Clin Oncol. 1994;12(7):1383–1389. doi:10.1200/JCO.1994.12.7.1383
  • Evans WE, Crom WR, Abromowitch M, et al. Clinical pharmacodynamics of high-dose methotrexate in acute lymphocytic leukemia. Identification of a relation between concentration and effect. N Engl J Med. 1986;314(8):471–477. doi:10.1056/NEJM198602203140803
  • Skärby TV, Anderson H, Heldrup J, et al. High leucovorin doses during high-dose methotrexate treatment may reduce the cure rate in childhood acute lymphoblastic leukemia. Leukemia. 2006;20(11):1955–1962. doi:10.1038/sj.leu.2404404
  • Niinimäki R, Aarnivala H, Banerjee J, et al. Reduced dose folinic acid rescue after rapid high-dose methotrexate clearance is not associated with increased toxicity in a pediatric cohort. Support Care Cancer. 2022;30(1):127–133. doi:10.1007/s00520-021-06395-3
  • Howard SC, McCormick J, Pui CH, et al. Preventing and managing toxicities of high-dose methotrexate. Oncologist. 2016;21(12):1471–1482. doi:10.1634/theoncologist.2015-0164
  • Nakano T, Kobayashi R, Matsushima S, et al. Risk factors for delayed elimination of high-dose methotrexate in childhood acute lymphoblastic leukemia and lymphoma. Int J Hematol. 2021;113(5):744–750. doi:10.1007/s12185-020-03071-w
  • Yang SL, Zhao FY, Song H, et al. Methotrexate associated renal impairment is related to delayed elimination of high-dose methotrexate. ScientificWorldJournal. 2015;2015:751703–751708. doi:10.1155/2015/751703
  • Schmidt D, Kristensen K, Schroeder H, et al. Plasma creatinine as predictor of delayed elimination of high-dose methotrexate in childhood acute lymphoblastic leukemia: a Danish population-based study. Pediatr Blood Cancer. 2019;66(6):e27637.
  • Wu C, Li W. Genomics and pharmacogenomics of pediatric acute lymphoblastic leukemia. Crit Rev Oncol Hematol. 2018;126:100–111. doi:10.1016/j.critrevonc.2018.04.002
  • Ebid A, Hossam A, El Gammal MM, et al. High dose methotrexate in adult Egyptian patients with hematological malignancies: impact of ABCB1 3435C > T rs1045642 and MTHFR 677C > T rs1801133 polymorphisms on toxicities and delayed elimination. J Chemother. 2022;34(6):381–390. doi:10.1080/1120009X.2021.2009723
  • Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, et al. Polymorphisms of the SLCO1B1 gene predict methotrexate-related toxicity in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;57(4):612–619. doi:10.1002/pbc.23074
  • Lu S, Zhu X, Li W, et al. Influence of methylenetetrahydrofolate reductase C677T and A1298C polymorphism on high-dose methotrexate-related toxicities in pediatric non-Hodgkin lymphoma patients. Front Oncol. 2021;11:598226. doi:10.3389/fonc.2021.598226
  • Frikha R, Jemaa MB, Frikha F, et al. Involvement of C677T MTHFR variant but not A1298C in methotrexate-induced toxicity in acute lymphoblastic leukemia. J Oncol Pharm Pract. 2021;27(6):1382–1387. doi:10.1177/1078155220951898
  • Hayashi RJ, Winter SS, Dunsmore KP, et al. Successful outcomes of newly diagnosed T lymphoblastic lymphoma: results from Children’s Oncology Group AALL0434. J Clin Oncol. 2020;38(26):3062–3070. doi:10.1200/JCO.20.00531

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.