420
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The 5th edition of the World Health Organization Classification of mature lymphoid and stromal tumors – an overview and update

, , , , , , ORCID Icon, , , , , , & show all
Pages 413-429 | Received 11 Aug 2023, Accepted 15 Aug 2023, Published online: 08 Jan 2024

References

  • Swerdlow SH, Campo E, Harris N, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues: Revised 4th edition. 2017.
  • Swerdlow SH, Campo E, Harris NL, et al. World health organization classification of tumours of haematopoietic and lymphoid tissues. 2008.
  • Marcus R, Davies A, Ando K, et al. Obinutuzumab for the first-Line treatment of follicular lymphoma. N Engl J Med. 2017;377(14):1331–1344. doi:10.1056/NEJMoa1614598
  • Hiddemann W, Barbui AM, Canales MA, et al. Immunochemotherapy with obinutuzumab or rituximab for previously untreated follicular lymphoma in the GALLIUM study: influence of chemotherapy on efficacy and safety. J Clin Oncol. 2018;36(23):2395–2404. doi:10.1200/JCO.2017.76.8960
  • Morschhauser F, Fowler NH, Feugier P, et al. Rituximab plus lenalidomide in advanced untreated follicular lymphoma. N Engl J Med. 2018;379(10):934–947. doi:10.1056/NEJMoa1805104
  • Rimsza LM, Li H, Braziel RM, et al. Impact of histological grading on survival in the SWOG S0016 follicular lymphoma cohort. Haematologica. 2018;103(4):e151–e153. doi:10.3324/haematol.2017.175059
  • Bachy E, Seymour JF, Feugier P, et al. Sustained progression-Free survival benefit of rituximab maintenance in patients with follicular lymphoma: long-Term results of the PRIMA study. J Clin Oncol. 2019;37(31):2815–2824. doi:10.1200/JCO.19.01073
  • Schmidt J, Gong S, Marafioti T, et al. Genome-wide analysis of pediatric-type follicular lymphoma reveals low genetic complexity and recurrent alterations of TNFRSF14 gene. Blood. 2016;128(8):1101–1111. doi:10.1182/blood-2016-03-703819
  • El Behery R, Laurini JA, Weisenburger DD, et al. Follicular large cleaved cell (centrocytic) lymphoma: an unrecognized variant of follicular lymphoma. Hum Pathol. 2018;72:180–190. doi:10.1016/j.humpath.2017.11.002
  • Laurent C, Adélaïde J, Guille A, et al. High-grade follicular lymphomas exhibit clinicopathologic, cytogenetic, and molecular diversity extending beyond grades 3A and 3B. Am J Surg Pathol. 2021;45(10):1324–1336. doi:10.1097/PAS.0000000000001726
  • El Hussein S, Khoury JD, Medeiros LJ. B-prolymphocytic leukemia: is it time to retire this entity? Ann Diagn Pathol. 2021;54:151790. doi:10.1016/j.anndiagpath.2021.151790
  • Siebert R, Schuh A, Ott G, et al. Response to the comments from the groupe francophone de cytogénétique hématologique (GFCH) on the 5th edition of the world health organization classification of haematolymphoid tumors. Leukemia. 2023;37(5):1170–1172. doi:10.1038/s41375-023-01872-6
  • Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–282. doi:10.1182/blood-2003-05-1545
  • Younes A, Sehn LH, Johnson P, et al. Randomized phase III trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell lymphoma. J Clin Oncol. 2019;37(15):1285–1295. doi:10.1200/JCO.18.02403
  • Scott DW, Wright GW, Williams PM, et al. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood. 2014;123(8):1214–1217. doi:10.1182/blood-2013-11-536433
  • Chapuy B, Stewart C, Dunford AJ, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 2018;24(5):679–690. doi:10.1038/s41591-018-0016-8
  • Wright GW, Da Huang W, Phelan JD, et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell. 2020;37(4):551–568.e14. doi:10.1016/j.ccell.2020.03.015
  • Zamò A, Gerhard-Hartmann E, Ott G, et al. Routine application of the Lymph2Cx assay for the subclassification of aggressive B-cell lymphoma: report of a prospective real-world series. Virchows Arch. 2022;481(6):935–943. doi:10.1007/s00428-022-03420-6
  • Runge HFP, Lacy S, Barrans S, et al. Application of the LymphGen classification tool to 928 clinically and genetically-characterised cases of diffuse large B cell lymphoma (DLBCL). Br J Haematol. 2021;192(1):216–220. doi:10.1111/bjh.17132
  • King RL, Goodlad JR, Calaminici M, et al. Lymphomas arising in immune-privileged sites: insights into biology, diagnosis, and pathogenesis. Virchows Arch. 2020;476(5):647–665. doi:10.1007/s00428-019-02698-3
  • Bonzheim I, Sander P, Salmerón-Villalobos J, et al. The molecular hallmarks of primary and secondary vitreoretinal lymphoma. Blood Adv. 2022;6:1598–1607.
  • Salaverria I, Philipp C, Oschlies I, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118(1):139–147. doi:10.1182/blood-2011-01-330795
  • Salaverria I, Martin-Guerrero I, Wagener R, et al. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling burkitt lymphoma. Blood. 2014;123(8):1187–1198. doi:10.1182/blood-2013-06-507996
  • Gonzalez-Farre B, Ramis-Zaldivar JE, Salmeron-Villalobos J, et al. Burkitt-like lymphoma with 11q aberration: a germinal center-derived lymphoma genetically unrelated to burkitt lymphoma. Haematologica. 2019;104(9):1822–1829. doi:10.3324/haematol.2018.207928
  • Horn H, Kalmbach S, Wagener R, et al. A diagnostic approach to the identification of burkitt-like lymphoma with 11q aberration in aggressive B-cell lymphomas. Am J Surg Pathol. 2021;45(3):356–364. doi:10.1097/PAS.0000000000001613
  • Wagener R, Seufert J, Raimondi F, et al. The mutational landscape of burkitt-like lymphoma with 11q aberration is distinct from that of burkitt lymphoma. Blood. 2019;133(9):962–966. doi:10.1182/blood-2018-07-864025
  • Rosenthal A, Younes A. High grade B-cell lymphoma with rearrangements of MYC and BCL2 and/or BCL6: double hit and triple hit lymphomas and double expressing lymphoma. Blood Rev. 2017;31(2):37–42. doi:10.1016/j.blre.2016.09.004
  • Alduaij W, Collinge B, Ben-Neriah S, et al. High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse large B-cell lymphoma morphology. Blood. 2018;141(20):2493–2507. doi:10.1182/blood-2017-12-820605
  • Ennishi D, Jiang A, Boyle M, et al. Double-Hit gene expression signature defines a distinct subgroup of germinal center B-cell-like diffuse large B-cell lymphoma. J Clin Oncol. 2019;37(3):190–201. doi:10.1200/JCO.18.01583
  • Sha C, Barrans S, Cucco F, et al. Molecular high-grade B-cell lymphoma: defining a Poor-Risk group that requires different approaches to therapy. J Clin Oncol. 2019;37(3):202–212. doi:10.1200/JCO.18.01314
  • Hilton LK, Tang J, Ben-Neriah S, et al. The double-hit signature identifies double-hit diffuse large B-cell lymphoma with genetic events cryptic to FISH. Blood. 2019;134(18):1528–1532. doi:10.1182/blood.2019002600
  • Alexanian S, Said J, Lones M, et al. KSHV/HHV8-negative effusion-based lymphoma, a distinct entity associated with fluid overload states. Am J Surg Pathol. 2013;37(2):241–249. doi:10.1097/PAS.0b013e318267fabc
  • Kaji D, Ota Y, Sato Y, et al. Primary human herpesvirus 8-negative effusion-based lymphoma: a large B-cell lymphoma with favorable prognosis. Blood Adv. 2020;4(18):4442–4450. doi:10.1182/bloodadvances.2020002293
  • Mendeville M, Roemer MGM, van den Hout MFCM, et al. Aggressive genomic features in clinically indolent primary HHV8-negative effusion-based lymphoma. Blood. 2019;133(4):377–380. doi:10.1182/blood-2017-12-822171
  • Wienand K, Chapuy B, Stewart C, et al. Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv. 2019;3(23):4065–4080. doi:10.1182/bloodadvances.2019001012
  • Weniger MA, Küppers R. Molecular biology of Hodgkin lymphoma. Leukemia. 2021;35(4):968–981. doi:10.1038/s41375-021-01204-6
  • Dojcinov SD, Venkataraman G, Raffeld M, et al. EBV positive mucocutaneous ulcer–a study of 26 cases associated with various sources of immunosuppression. Am J Surg Pathol. 2010;34(3):405–417. doi:10.1097/PAS.0b013e3181cf8622
  • Dojcinov SD, Venkataraman G, Pittaluga S, et al. Age-related EBV-associated lymphoproliferative disorders in the Western population: a spectrum of reactive lymphoid hyperplasia and lymphoma. Blood. 2011;117(18):4726–4735. doi:10.1182/blood-2010-12-323238
  • Nicolae A, Pittaluga S, Venkataraman G, et al. Peripheral T-cell lymphomas of follicular T-helper cell derivation with hodgkin/Reed-Sternberg cells of B-cell lineage: both EBV-positive and EBV-negative variants exist. Am J Surg Pathol. 2013;37(6):816–826. doi:10.1097/PAS.0b013e3182785610
  • Sarkozy C, Copie-Bergman C, Damotte D, et al. Gray-zone lymphoma between cHL and large B-cell lymphoma: a histopathologic series from the LYSA. Am J Surg Pathol. 2019;43(3):341–351. doi:10.1097/PAS.0000000000001198
  • Traverse-Glehen A, Pittaluga S, Gaulard P, et al. Mediastinal gray zone lymphoma: the missing link between classic Hodgkin’s lymphoma and mediastinal large B-cell lymphoma. Am J Surg Pathol. 2005;29(11):1411–1421. doi:10.1097/01.pas.0000180856.74572.73
  • Eberle FC, Rodriguez-Canales J, Wei L, et al. Methylation profiling of mediastinal gray zone lymphoma reveals a distinctive signature with elements shared by classical hodgkin’s lymphoma and primary mediastinal large B-cell lymphoma. Haematologica. 2011;96(4):558–566. doi:10.3324/haematol.2010.033167
  • Pittaluga S, Nicolae A, Wright GW, et al. Gene expression profiling of mediastinal gray zone lymphoma and its relationship to primary mediastinal B-cell lymphoma and classical hodgkin lymphoma. Blood Cancer Discov. 2020;1(2):155–161. doi:10.1158/2643-3230.BCD-20-0009
  • Sarkozy C, Hung SS, Chavez EA, et al. Mutational landscape of gray zone lymphoma. Blood. 2021;137(13):1765–1776. doi:10.1182/blood.2020007507
  • Campo E, Jaffe ES. Taking gray zone lymphomas out of the shadows. Blood. 2021;137(13):1703–1704. doi:10.1182/blood.2020009265
  • Nicolae A, Pittaluga S, Abdullah S, et al. EBV-positive large B-cell lymphomas in young patients: a nodal lymphoma with evidence for a tolerogenic immune environment. Blood. 2015;126(7):863–872. doi:10.1182/blood-2015-02-630632
  • Hartmann S, Döring C, Vucic E, et al. Array comparative genomic hybridization reveals similarities between nodular lymphocyte predominant hodgkin lymphoma and T cell/histiocyte rich large B cell lymphoma. Br J Haematol. 2015;169(3):415–422. doi:10.1111/bjh.13310
  • Hartmann S, Eichenauer DA. Nodular lymphocyte predominant hodgkin lymphoma: pathology, clinical course and relation to T-cell/histiocyte rich large B-cell lymphoma. Pathology. 2020;52(1):142–153. doi:10.1016/j.pathol.2019.10.003
  • Fan Z, Natkunam Y, Bair E, et al. Characterization of variant patterns of nodular lymphocyte predominant hodgkin lymphoma with immunohistologic and clinical correlation. Am J Surg Pathol. 2003;27(10):1346–1356. doi:10.1097/00000478-200310000-00007
  • Randen U, Trøen G, Tierens A, et al. Primary cold agglutinin-associated lymphoproliferative disease: a B-cell lymphoma of the bone marrow distinct from lymphoplasmacytic lymphoma. Haematologica. 2014;99(3):497–504. doi:10.3324/haematol.2013.091702
  • Małecka A, Trøen G, Tierens A, et al. Frequent somatic mutations of KMT2D (MLL2) and CARD11 genes in primary cold agglutinin disease. Br J Haematol. 2018;183(5):838–842. doi:10.1111/bjh.15063
  • Małecka A, Delabie J, Østlie I, et al. Cold agglutinin-associated B-cell lymphoproliferative disease shows highly recurrent gains of chromosome 3 and 12 or 18. Blood Adv. 2020;4(6):993–996. doi:10.1182/bloodadvances.2020001608
  • Bridoux F, Leung N, Hutchison CA, et al. Diagnosis of monoclonal gammopathy of renal significance. Kidney Int. 2015;87(4):698–711. doi:10.1038/ki.2014.408
  • Nasr SH, Valeri AM, Cornell LD, et al. Renal monoclonal immunoglobulin deposition disease: a report of 64 patients from a single institution. Clin J Am Soc Nephrol. 2012;7(2):231–239. doi:10.2215/CJN.08640811
  • Joly F, Cohen C, Javaugue V, et al. Randall-type monoclonal immunoglobulin deposition disease: novel insights from a nationwide cohort study. Blood. 2019;133(6):576–587. doi:10.1182/blood-2018-09-872028
  • Bhargava P, Rushin JM, Rusnock EJ, et al. Pulmonary light chain deposition disease: report of five cases and review of the literature. Am J Surg Pathol. 2007;31(2):267–276. doi:10.1097/01.pas.0000213358.18380.d2
  • Colombat M, Stern M, Groussard O, et al. Pulmonary cystic disorder related to light chain deposition disease. Am J Respir Crit Care Med. 2006;173(7):777–780. doi:10.1164/rccm.200510-1620CR
  • Mohan M, Buros A, Mathur P, et al. Clinical characteristics and prognostic factors in multiple myeloma patients with light chain deposition disease. Am J Hematol. 2017;92(8):739–745. doi:10.1002/ajh.24756
  • Vos JM, Gustine J, Rennke HG, et al. Renal disease related to waldenström macroglobulinaemia: incidence, pathology and clinical outcomes. Br J Haematol. 2016;175(4):623–630. doi:10.1111/bjh.14279
  • Higgins L, Nasr SH, Said SM, et al. Kidney involvement of patients with waldenström macroglobulinemia and other IgM-producing B cell lymphoproliferative disorders. Clin J Am Soc Nephrol. 2018;13(7):1037–1046. doi:10.2215/CJN.13041117
  • Tsai H-T, Caporaso NE, Kyle RA, et al. Evidence of serum immunoglobulin abnormalities up to 9.8 years before diagnosis of chronic lymphocytic leukemia: a prospective study. Blood. 2009;114(24):4928–4932. doi:10.1182/blood-2009-08-237651
  • Stratta P, Gravellone L, Cena T, et al. Renal outcome and monoclonal immunoglobulin deposition disease in 289 old patients with blood cell dyscrasias: a single center experience. Crit Rev Oncol Hematol. 2011;79(1):31–42. doi:10.1016/j.critrevonc.2010.05.001
  • Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48. doi:10.1016/S1470-2045(14)70442-5
  • Fernández de Larrea C, Kyle R, Rosiñol L, et al. Primary plasma cell leukemia: consensus definition by the international myeloma working group according to peripheral blood plasma cell percentage. Blood Cancer J. 2021;11(12):192. doi:10.1038/s41408-021-00587-0
  • Rongioletti F, Romanelli P, Rebora A. Cutaneous mucinous angiomatosis as a presenting sign of bone plasmacytoma: a new case of (A)ESOP syndrome. J Am Acad Dermatol. 2006;55(5):909–910. doi:10.1016/j.jaad.2006.04.072
  • Sakemi H, Okada H. An autopsy case of Crow-Fukase syndrome which developed 18 years after the first manifestation of plasmacytoma. Intern Med. 1992;31(1):50–54. doi:10.2169/internalmedicine.31.50
  • Bousfiha A, Moundir A, Tangye SG, et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J Clin Immunol. 2022;42(7):1508–1520. doi:10.1007/s10875-022-01352-z
  • Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2022 update on the classification from the international union of immunological societies expert committee. J Clin Immunol. 2022;42(7):1473–1507. doi:10.1007/s10875-022-01289-3
  • Khoury JD, Solary E, Abla O, et al. The 5th edition of the world health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–1719. doi:10.1038/s41375-022-01613-1
  • Menter T, Juskevicius D, Alikian M, et al. Mutational landscape of B-cell post-transplant lymphoproliferative disorders. Br J Haematol. 2017;178(1):48–56. doi:10.1111/bjh.14633
  • Ye X, Maglione PJ, Wehr C, et al. Genomic characterization of lymphomas in patients with inborn errors of immunity. Blood Adv. 2022;6(18):5403–5414. doi:10.1182/bloodadvances.2021006654
  • Cabanié C, Ammari S, Hans S, et al. Outcomes of patients with cancer and sarcoid-like granulomatosis associated with immune checkpoint inhibitors: a case-control study. Eur J Cancer. 2021;156:46–59. doi:10.1016/j.ejca.2021.07.015
  • Alaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the world health organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36(7):1720–1748. doi:10.1038/s41375-022-01620-2
  • Steinhilber J, Mederake M, Bonzheim I, et al. The pathological features of angioimmunoblastic T-cell lymphomas with IDH2R172 mutations. Mod Pathol. 2019;32(8):1123–1134. doi:10.1038/s41379-019-0254-4
  • Attygalle AD, Chuang S-S, Diss TC, et al. Distinguishing angioimmunoblastic T-cell lymphoma from peripheral T-cell lymphoma, unspecified, using morphology, immunophenotype and molecular genetics. Histopathology. 2007;50(4):498–508. doi:10.1111/j.1365-2559.2007.02632.x
  • Tokunaga T, Shimada K, Yamamoto K, et al. Retrospective analysis of prognostic factors for angioimmunoblastic T-cell lymphoma: a multicenter cooperative study in Japan. Blood. 2012;119(12):2837–2843. doi:10.1182/blood-2011-08-374371
  • Leval L D, Parrens M, Le Bras F, et al. Angioimmunoblastic T-cell lymphoma is the most common T-cell lymphoma in two distinct French information data sets. Haematologica. 2015;100(9):e361-4–e364. doi:10.3324/haematol.2015.126300
  • Sakata-Yanagimoto M, Enami T, Yoshida K, et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46(2):171–175. doi:10.1038/ng.2872
  • Schwartz FH, Cai Q, Fellmann E, et al. TET2 mutations in B cells of patients affected by angioimmunoblastic T-cell lymphoma. J Pathol. 2017;242(2):129–133. doi:10.1002/path.4898
  • Wang C, McKeithan TW, Gong Q, et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood. 2015;126(15):1741–1752. doi:10.1182/blood-2015-05-644591
  • Yao W-Q, Wu F, Zhang W, et al. Angioimmunoblastic T-cell lymphoma contains multiple clonal T-cell populations derived from a common TET2 mutant progenitor cell. J Pathol. 2020;250(3):346–357. doi:10.1002/path.5376
  • Attygalle AD, Dobson R, Chak PK, et al. Parallel evolution of two distinct lymphoid proliferations in clonal haematopoiesis. Histopathology. 2022;80(5):847–858. doi:10.1111/his.14619
  • Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124(9):1473–1480. doi:10.1182/blood-2014-04-571091
  • Pedersen MB, Hamilton-Dutoit SJ, Bendix K, et al. DUSP22 and TP63 rearrangements predict outcome of ALK-negative anaplastic large cell lymphoma: a Danish cohort study. Blood. 2017;130(4):554–557. doi:10.1182/blood-2016-12-755496
  • Hapgood G, Ben-Neriah S, Mottok A, et al. Identification of high-risk DUSP22-rearranged ALK-negative anaplastic large cell lymphoma. Br J Haematol. 2019;186(3):e28–e31. doi:10.1111/bjh.15860
  • Qiu L, Tang G, Li S, et al. DUSP22 rearrangement is associated with a distinctive immunophenotype but not outcome in patients with systemic ALK-negative anaplastic large cell lymphoma. Haematologica. 2023;108(6):1604–1615. doi:10.3324/haematol.2022.281222
  • Boi M, Rinaldi A, Kwee I, et al. PRDM1/BLIMP1 is commonly inactivated in anaplastic large T-cell lymphoma. Blood. 2013;122(15):2683–2693. doi:10.1182/blood-2013-04-497933
  • Liang H-C, Costanza M, Prutsch N, et al. Super-enhancer-based identification of a BATF3/IL-2R-module reveals vulnerabilities in anaplastic large cell lymphoma. Nat Commun. 2021;12(1):5577. doi:10.1038/s41467-021-25379-9
  • King RL, Dao LN, McPhail ED, et al. Morphologic features of ALK-negative anaplastic large cell lymphomas with DUSP22 rearrangements. Am J Surg Pathol. 2016;40(1):36–43. doi:10.1097/PAS.0000000000000500
  • Feldman AL, Oishi N, Ketterling RP, et al. Immunohistochemical approach to genetic subtyping of anaplastic large cell lymphoma. Am J Surg Pathol. 2022;46(11):1490–1499. doi:10.1097/PAS.0000000000001941
  • Scarfò I, Pellegrino E, Mereu E, et al. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood. 2016;127(2):221–232. doi:10.1182/blood-2014-12-614503
  • Fitzpatrick MJ, Massoth LR, Marcus C, et al. JAK2 rearrangements are a recurrent alteration in CD30+ systemic T-cell lymphomas with anaplastic morphology. Am J Surg Pathol. 2021;45(7):895–904. doi:10.1097/PAS.0000000000001708
  • Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood. 2014;123(19):2915–2923. doi:10.1182/blood-2013-11-536359
  • Mitteldorf C, Stadler R, Sander CA, et al. Folliculotropic mycosis fungoides. J Dtsch Dermatol Ges. 2018;16(5):543–557. doi:10.1111/ddg.13514
  • Kempf W, Petrella T, Willemze R, et al. Clinical, histopathological and prognostic features of primary cutaneous acral CD8+ T-cell lymphoma and other dermal CD8+ cutaneous lymphoproliferations: results of an EORTC cutaneous lymphoma group workshop. Br J Dermatol. 2022;186(5):887–897. doi:10.1111/bjd.20973
  • Kempf W, Kerl K, Mitteldorf C. Cutaneous CD30-positive T-cell lymphoproliferative disorders-clinical and histopathologic features, differential diagnosis, and treatment. Semin Cutan Med Surg. 2018;37(1):24–29. doi:10.12788/j.sder.2018.001
  • Csikesz CR, Knudson RA, Greipp PT, et al. Primary cutaneous CD30-positive T-cell lymphoproliferative disorders with biallelic rearrangements of DUSP22. J Invest Dermatol. 2013;133(6):1680–1682. doi:10.1038/jid.2013.22
  • Vasmatzis G, Johnson SH, Knudson RA, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120(11):2280–2289. doi:10.1182/blood-2012-03-419937
  • Velusamy T, Kiel MJ, Sahasrabuddhe AA, et al. A novel recurrent NPM1-TYK2 gene fusion in cutaneous CD30-positive lymphoproliferative disorders. Blood. 2014;124(25):3768–3771. doi:10.1182/blood-2014-07-588434
  • Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the world health organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390. doi:10.1182/blood-2016-01-643569
  • Polprasert C, Takeuchi Y, Kakiuchi N, et al. Frequent germline mutations of HAVCR2 in sporadic subcutaneous panniculitis-like T-cell lymphoma. Blood Adv. 2019;3(4):588–595. doi:10.1182/bloodadvances.2018028340
  • Koh J, Jang I, Mun S, et al. Genetic profiles of subcutaneous panniculitis-like T-cell lymphoma and clinicopathological impact of HAVCR2 mutations. Blood Adv. 2021;5(20):3919–3930. doi:10.1182/bloodadvances.2021004562
  • Willemze R, Cerroni L, Kempf W, et al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood. 2019;133(16):1703–1714. doi:10.1182/blood-2018-11-881268
  • Kempf W, Mitteldorf C. Cutaneous T-cell lymphomas-An update 2021. Hematol Oncol. 2021;39 Suppl 1:46–51. doi:10.1002/hon.2850
  • Sanikommu SR, Clemente MJ, Chomczynski P, et al. Clinical features and treatment outcomes in large granular lymphocytic leukemia (LGLL). Leuk Lymphoma. 2018;59(2):416–422. doi:10.1080/10428194.2017.1339880
  • Muñoz-García N, Jara-Acevedo M, Caldas C, et al. STAT3 and STAT5B mutations in T/NK-cell chronic lymphoproliferative disorders of large granular lymphocytes (LGL): association with disease features. Cancers (Basel). 2020;12(12):3508. doi:10.3390/cancers12123508
  • Kawa-Ha K, Ishihara S, Ninomiya T, et al. CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein-Barr viral DNA. J Clin Invest. 1989;84(1):51–55. doi:10.1172/JCI114168
  • Hart DN, Baker BW, Inglis MJ, et al. Epstein-Barr viral DNA in acute large granular lymphocyte (natural killer) leukemic cells. Blood. 1992;79(8):2116–2123. doi:10.1182/blood.V79.8.2116.2116
  • Chan JK, Sin VC, Wong KF, et al. Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood. 1997;89(12):4501–4513. doi:10.1182/blood.V89.12.4501
  • Iqbal J, Weisenburger DD, Chowdhury A, et al. Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic γδ T-cell lymphoma and is highly sensitive to a novel Aurora kinase a inhibitor in vitro. Leukemia. 2011;25(2):348–358. doi:10.1038/leu.2010.255
  • Ishida F, Ko YH, Kim WS, et al. Aggressive natural killer cell leukemia: therapeutic potential of L-asparaginase and allogeneic hematopoietic stem cell transplantation. Cancer Sci. 2012;103(6):1079–1083. doi:10.1111/j.1349-7006.2012.02251.x
  • Gao J, Behdad A, Ji P, et al. EBV-negative aggressive NK-cell leukemia/lymphoma: a clinical and pathological study from a single institution. Mod Pathol. 2017;30(8):1100–1115. doi:10.1038/modpathol.2017.37
  • Suzuki R, Suzumiya J, Nakamura S, et al. Aggressive natural killer-cell leukemia revisited: large granular lymphocyte leukemia of cytotoxic NK cells. Leukemia. 2004;18(4):763–770. doi:10.1038/sj.leu.2403262
  • Takeuchi K, Yokoyama M, Ishizawa S, et al. Lymphomatoid gastropathy: a distinct clinicopathologic entity of self-limited pseudomalignant NK-cell proliferation. Blood. 2010;116(25):5631–5637. doi:10.1182/blood-2010-06-290650
  • Mansoor A, Pittaluga S, Beck PL, et al. NK-cell enteropathy: a benign NK-cell lymphoproliferative disease mimicking intestinal lymphoma: clinicopathologic features and follow-up in a unique case series. Blood. 2011;117(5):1447–1452. doi:10.1182/blood-2010-08-302737
  • Xiao W, Gupta GK, Yao J, et al. Recurrent somatic JAK3 mutations in NK-cell enteropathy. Blood. 2019;134(12):986–991. doi:10.1182/blood.2019001443
  • Xia D, Morgan EA, Berger D, et al. NK-cell enteropathy and similar indolent lymphoproliferative disorders: a case series with literature review. Am J Clin Pathol. 2019;151:75–85.
  • Krishnan R, Ring K, Williams E, et al. An enteropathy-like indolent NK-cell proliferation presenting in the female genital tract. Am J Surg Pathol. 2020;44(4):561–565. doi:10.1097/PAS.0000000000001387
  • Dargent J-L, Tinton N, Trimech M, et al. Lymph node involvement by enteropathy-like indolent NK-cell proliferation. Virchows Arch. 2021;478(6):1197–1202. doi:10.1007/s00428-020-02892-8
  • Yi H, Li A, Ouyang B, et al. Clinicopathological and molecular features of indolent natural killer-cell lymphoproliferative disorder of the gastrointestinal tract. Histopathology. 2023;82(4):567–575. doi:10.1111/his.14850
  • Xiong J, Cui B-W, Wang N, et al. Genomic and transcriptomic characterization of natural killer T cell lymphoma. Cancer Cell. 2020;37(3):403–419.e6. doi:10.1016/j.ccell.2020.02.005
  • Dong G, Liu X, Wang L, et al. Genomic profiling identifies distinct genetic subtypes in extra-nodal natural killer/T-cell lymphoma. Leukemia. 2022;36(8):2064–2075. doi:10.1038/s41375-022-01623-z
  • Jeon YK, Kim J-H, Sung J-Y, et al. Epstein-Barr virus-positive nodal T/NK-cell lymphoma: an analysis of 15 cases with distinct clinicopathological features. Hum Pathol. 2015;46(7):981–990. doi:10.1016/j.humpath.2015.03.002
  • Jung KS, Cho S-H, Kim SJ, et al. Clinical features and treatment outcome of Epstein-Barr virus-positive nodal T-cell lymphoma. Int J Hematol. 2016;104(5):591–595. doi:10.1007/s12185-016-2068-1
  • Ng S-B, Chung T-H, Kato S, et al. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematologica. 2018;103(2):278–287. doi:10.3324/haematol.2017.180430
  • Yamashita D, Shimada K, Takata K, et al. Reappraisal of nodal Epstein-Barr virus-negative cytotoxic T-cell lymphoma: identification of indolent CD5+ diseases. Cancer Sci. 2018;109(8):2599–2610. doi:10.1111/cas.13652
  • Wai CMM, Chen S, Phyu T, et al. Immune pathway upregulation and lower genomic instability distinguish EBV-positive nodal T/NK-cell lymphoma from ENKTL and PTCL-NOS. Haematologica. 2022;107(8):1864–1879. doi:10.3324/haematol.2021.280003
  • Cohen JI, Manoli I, Dowdell K, et al. Hydroa vacciniforme-like lymphoproliferative disorder: an EBV disease with a low risk of systemic illness in whites. Blood. 2019;133(26):2753–2764. doi:10.1182/blood.2018893750
  • Bofill M, Akbar AN, Amlot PL. Follicular dendritic cells share a membrane-bound protein with fibroblasts. J. Pathol. 2000;191(2):217–226. doi:10.1002/(SICI)1096-9896(200006)191:2<217::AID-PATH586>3.0.CO;2-6
  • van Nierop K, Groot C D Human follicular dendritic cells: function, origin and development. Semin Immunol. 2002;14(4):251–257. doi:10.1016/s1044-5323(02)00057-x
  • Jarjour M, Jorquera A, Mondor I, et al. Fate mapping reveals origin and dynamics of lymph node follicular dendritic cells. J Exp Med. 2014;211(6):1109–1122. doi:10.1084/jem.20132409

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.