1,587
Views
56
CrossRef citations to date
0
Altmetric
Original

Indigogenic substrates for detection and localization of enzymes

Pages 73-103 | Published online: 12 Jul 2009

References

  • Abrahamson DR, Rodewald R. Evidence for the sorting of endocytic vesicle contents during the receptor-mediated transport of IgG across the newborn rat intestine. J. Cell Biol. 1981; 91: 270–280
  • Abramson J, Iwata S, Kaback HR. Lactose permease as a paradigm for membrane transport proteins (Review). Mol. Memb. Biol. 2003; 21: 227–236
  • Achyuthan KE. Fluorescent assays to quantitate enzymatic activities yielding as end product an aqueous-insoluble indigo-blue dye. Langmuir 2004; 20: 2424–2428
  • Ahlqvist J. Observations on the effect of potassium ferri- and ferrocyanides on the formation of indigo from indoxyl acetate split by alkali and liver homogenates. Acta Pathol. Microbiol. Scand. 1963; 57: 353–360
  • Aho S, Arffman A, Pummi T, Uitto J. A novel reporter gene MEL1 for the yeast two-hybrid system. Anal. Biochem. 1997; 253: 270–272
  • Aldridge WN. Serum esterases. I. Two types of esterases (A and B) hydrolysing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Biochem. J. 1953; 53: 110–116
  • Arnold WN. King George III's urine and indigo blue. Lancet 1996; 347: 1811–1813
  • Baechtel FS, Brown J, Terrell LD. Presumptive screening of suspected semen stain in situ using cotton swabs and bromochloroindolyl phosphate to detect prostatic acid phosphatase activity. J. Forensic. Sci. 1987; 32: 880–887
  • Baeyer A. Ueber der Verbindung der Indigogruppe. Ber. Deut. Chem. Ges. 1881; 14: 1741–1746
  • Baker JT, Sutherland MD. Pigments of marine animals. VIII. Precursors of 6,6′-dibromoindigotin (Tyrian purple) from the mollusc Dicathais orbita Gmelin. Tetrahedron 1968; 1968: 43–46
  • Balls AK, Matlack MB. Mode of action of pancreatic lipase. J. Biol. Chem. 1938; 123: 679–686
  • Barlow GB, Dickson JAS. Purple urine bags. Lancet 1978; 1978-1: 220–221
  • Baron AS, Nano FE. Mg1A and Mg1B are required for the intramacrophage growth of Francisella novicida. Mol. Microbiol. 1998; 29: 247–259
  • Barrnett RJ. The distribution of esterolytic activity in the tissues of the albino rat as demonstrated with indoxyl acetate. J. Histochem. Cytochem. 1954; 2: 577–599
  • Barrnett RJ, Seligman AM. Histochemical demonstration of esterases by production of indigo. Science 1951; 114: 579–582
  • Bentsen, JG, Mickelson, CA, Knudson, OB, Lewandowski, KM. (2003): Fluorogenic compounds and uses therefor. U.S. Patent 6566508.
  • Blake MS, Johnston KH, Russell-Jones GJ, Gotschlich EC. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on western blots. Anal. Biochem. 1984; 136: 175–179
  • Boenisch T. Basic enzymology. Immunochemical Staining Methods, SJ Naish. DAKO Corporation, Carpinteria, California 1989; 9–12
  • Bondi A, Chieregatti G, Eusebi V, Fulcheri E, Bussolati G. The use of β-galactosidase as a tracer in immunocytochemistry. Histochemistry 1982; 76: 153–158
  • Bourbouze R, Bernard M, Baumann FC, Perez-Gonzalez N, Martin-Barrientos J, Cabezas JA. Localisation subcellulaire des isoenzymes de la N-acetyl-β-d-glucosaminidase du cortex renal de lapin. Cell. Molec. Biol. 1984; 30: 67–74
  • Bracegirdle B. The history of staining. Ch. 2. Conn's Biological Stains, RW Horobin, JA Kiernan. BIOS, Oxford 2002; 15–21
  • Brenan M, Bath ML. Indoxyl-tetranitro blue tetrazolium method for detection of alkaline phosphatase in immunohistochemistry. J. Histochem. Cytochem. 1989; 37: 1299–1301
  • Brode WR, Pearson EG, Wyman GM. The relation between the absorption spectra and the chemical constitution of dyes. XXVII. Cis–trans isomerism and hydrogen bonding in indigo dyes. J. Am. Chem. Soc. 1954; 76: 1034–1036
  • Bulow P. The ONPG test in diagnostic bacteriology. 1. Methodological investigations. Acta Pathol. Microbiol. Scand. 1964; 60: 376–386
  • Burstone MS. Enzyme Histochemistry. Academic Press, New York 1962; 138–152
  • Butcher LL. Acetylcholinesterase histochemistry. Ch. 1. Handbook of Chemical Neuroanatomy, Vol. 1. Methods in Chemical Neuroanatomy, A Bjorklund, T Hokfelt. Elsevier, Amsterdam 1983; 1–49
  • Carson FL. Histotechnology. A Self-Instructional Text2nd ed. American Society of Clinical Pathologists, Chicago 1997; 253–256, 254–260
  • Cejkova J, Zvarova J, Andonova Z, Ardan T. Comparative histochemical and biochemical studies on acid β-galactosidase activity in the experimentally injured rabbit cornea and tear fluid using the sensitive substrate β-galactoside-4-trifluoromethylumbelliferyl (HFC). Histol. Histopathol. 1999; 14: 471–478
  • Chanayath N, Lhieochaiphant S, Phutrakul S. Pigment extraction techniques from the leaves of Indigofera tinctoria Linn. and Baphicacanthus cusia Brem. and chemical structure analysis of their major components. Chiang Mai Univ. J. 2002; 1: 149–160
  • Christie RM, Mather RR, Wardman RH. The Chemistry of Colour Application. Blackwell, Oxford 2000; 15–16
  • Conn HJ. The History of Staining. Biological Stain Commission, Geneva, NY 1933; 13, 18, 27
  • Cooksey CJ. Tyrian purple: 6,6′-dibromoindigo and related compounds. Molecules 2001; 6: 736–769
  • Cotson S, Holt SJ. Studies in enzyme histochemistry. IV. Kinetics of aerial oxidation of indoxyl and some of its halogen derivatives. Proc. R. Soc. Lond. B 1958; 148: 506–519
  • Curzon G, Walsh J. A method for the determination of urinary indoxyl sulfate (indican). Clin. Chim. Acta 1962; 7: 657–663
  • Davies J, Jacob F. Genetic mapping of the regulator and operator genes of the Lac operon. J. Molec. Biol. 1968; 36: 413–417
  • Davis BJ, Ornstein L. High resolution enzyme localization with a new diazo reagent hexazonium pararosaniline. J. Histochem. Cytochem. 1959; 7: 297–298
  • Dealler SF, Hawket PM, Millar MR. Enzymatic degradation of urinary indoxyl sulfate by Providencia stuartii and Klebsiella pneumoniae causes the purple urine bag syndrome. J. Clin. Microbiol. 1988; 26: 2152–2156
  • Debacq-Chainlaux F, Borlon C, Pascal T, Royer V, Eliaers F, Ninane N, Carrard G, Friguet B, de Longueville F, Boffe S, Remacle J, Toussaint O. Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-beta 1 signaling pathway. J. Cell Sci. 2005; 118: 743–758
  • De Jong DW, Jansen EF, Olson AC. Oxidative and hydrolytic enzyme patterns in plant suspension culture cells. Exp. Cell Res. 1967; 47: 139–156
  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubeli I, Pereira-Smith O, Peacocke M. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 1995; 92: 9363–9367
  • Drummond KN, Michael AF, Ulstrom RA, Good RA. The blue diaper syndrome: familial hypercalcemia with nephrocalcinosis and indicanuria; a new familial disease, with definition of the metabolic abnormality. Am. J. Med. 1964; 37: 928–948
  • Duerdon BI, Towner KJ, Magee JT. Isolation, description and identification of bacteria. Ch. 4. Topley & Wilson's Microbiology and Microbial Infections, A Balows, BI Duerdon. Arnold, London 1998; 65–84
  • Ecobichon DJ, Kalow W. Properties and classification of the soluble esterases of human liver. Biochem. Pharmacol. 1962; 11: 573–583
  • Edwards MJ, Taylor MF. Substitution of DMSO for DMF as a solvent for X-gal. Biotechniques 1993; 14: 234
  • Eggen RIL, Segner H. The potential of mechanism-based bioanalytical tools in ecotoxicological exposure and effect measurement. Anal. Bioanal. Chem. 2003; 377: 386–396
  • Epstein E, Nabors MW, Stowe BB. Origin of indigo of woad. Nature 1967a; 216: 547–549
  • Epstein E, Wolf PL, Horwitz JP, Zak B. An indigogenic reaction for alkaline phosphatase in disk electrophoresis. Am. J. Clin. Pathol. 1967b; 48: 530–534
  • Esterly JR, Standen AC, Pearson B. The histochemical demonstration of intestinal β-d-fucosidase with 5-bromo-4-chloroindole-3-yl-β-d-fucopyranoside. J. Histochem. Cytochem. 1967; 15: 470–474
  • Esterly JR, Standen AC, Pearson B. The histochemical demonstration of β-d-xylosidase activity. J. Histochem. Cytochem. 1968; 16: 489–491
  • Fanjul-Bolado P, Gonzalez-Garcia MB, Costa-Garcia A. 3-Indoxyl phosphate as an electrochemical substrate for horseradish peroxidase. Electroanalysis 2004; 16: 988–993
  • Fanjul-Bolado P, Gonzalez-Garcia MB, Costa-Garcia A. Detection of leucoindigo in alkaline phosphatase and peroxidase based assays using 3-indoxyl phosphate as substrate. Anal. Chim. Acta 2005; 534: 231–238
  • Fijii I, Iwabuchi Y, Teshima T, Shiba T, Kikuchi M. X-Neu5Ac: a novel substrate for chromogenic assay of neuraminidase activity in bacterial expression systems. Bioorg. Med. Chem. 1993; 1: 147–149
  • Fiocchi A, Restani P, Leo G, Nartelli A, Bouygue GR, Terrecciano L, Ballabio C, Valsasina R. Clinical tolerance to lactose in children with cow's milk allergy. Pediatrics 2003; 112: 359–362
  • Fouquet H, Bielig HJ. Biological precursors and genesis of Tyrian-purple. Angew. Chem. Internat. Ed. Engl. 1971; 10: 816–817
  • Gabe M. Histological Techniques (English ed., transl. Blackith E and Kavoor A). Masson, Paris 1976; 202–203
  • Galbraith DA, Watts DC. N-methylindoxyl acetate-linked stain for acetylcholinesterase. Biochem. Soc. Trans. 1978; 6: 771–773
  • SR Gallagher, (1992). GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, San Diego, CA. pp. 62–64
  • Garrison PN, de la Pena CE, Barnes LE. Synthesis and use of a chromogenic substrate analog for Ap4A catabolic enzymes. Anal. Biochem. 1993; 210: 226–230
  • Gehauf B, Goldenson J. Detection and estimation of nerve gases by fluorescence reaction. Anal. Chem. 1957; 29: 276–278
  • P Gerhardt, Murray, RGE, Wood, WA, Krieg, N, (1994). Methods for General and Molecular Microbiology. American Society for Microbiology, Washington, DC. p. 620
  • Gillam EMJ, Notley LM, Cai HL, De Voss JJ, Guengerich FP. Oxidation of indole by cytochrome P450 enzymes. Biochemistry 2000; 39: 13817–13824
  • Gioglio L, Cusella De Angelis MG, Boratto R, Poggi P. An improved method for β-d-galactosidase activity detection on muscle tissue. A light and electron microscopic study. Ann. Anat. 2002; 184: 153–157
  • Gossrau R. Uber den histochemischen Nachweis der β-Glucuronidase, α-Mannosidase und α-Galactosidase mit 1-Naphthylglycosiden. Histochemie 1973; 36: 367–381
  • Gossrau R. Azoindoxylverfahren zum Hydrolasenachweis. I. Lactase (Lactose-β-d-glucosidase-Komplex). Histochemistry 1976; 38: 111–119
  • Gossrau R. Azoindoxylverfahren zum Hydrolasenachweis. II. Biochemische und histochemische Untersuchung der sauren β-d-galactosidase. Histochemistry 1977; 51: 219–237
  • Gossrau R. Azoindoxylverfahren zum Hydrolasenachweis. II. Histochemische Untersuchung der β-d-N-acetylglucosaminidase. Histochemistry 1978a; 55: 159–172
  • Gossrau R. Azoindoxylverfahren zum Hydrolasenachweis. IV. Zur Eignung verschiedener Diazoniumsalze. Histochemistry 1978b; 57: 323–342
  • Gossrau R. Indoxyl α-d-galactoside as the temporarily last substrate for glycosidase histochemistry-the present state-of-the-art in histochemical glycosidase research using indoxyl glycosides. Fol. Histochem. Cytobiol. 1990; 28: 129–143
  • Gossrau R, Lojda Z. Histochemical detection of α-galactosidase with 5-Br-4-Cl-3-indoxyl α-D-galactosidase. Acta Histochem. 1969; 85: 213–222
  • Gossrau R, Eschenfelder V, Brossmer R. 5-Brom-3-indolyl-α-ketoside of 5-N-acetyl-D-neuraminic acid a new substrate for the light and electron microscopic demonstration of mammalian neuraminidase. Histochemistry 1977; 53: 189–192
  • Gossrau, R, Lojda, Z, Stoward, PJ. (1991). Glycosidases. Ch. 30, In:. PJ Stoward, and, Pearse, AGE. Histochemistry, Theoretical and Applied. Vol. 3. Churchill Livingstone, Edinburgh. pp. 241–279, 619638.
  • Grant MM, Briggs DE. The histochemical location of arabinosidase and xylosidase in germinating wheat grains. J. Inst. Brewing 2002; 108: 478–480
  • Guilbault GG, Kramer DN. Resorufin butyrate and indoxyl acetate as fluorogenic substrates for cholinesterase. Anal. Chem. 1965; 37: 120–123
  • Guivarch A, Caissard JC, Azmi A, Elmayan T, Chriqui D, Tepfer M. In situ detection of expression of the gus reporter gene in transgenic plants: ten years of blue genes. Transgen. Res. 1996; 5: 281–288
  • Guranowski A. Analogs of diadenosine tetraphosphate (Ap4A). Acta Biochem. Polon. 2003; 50: 947–972
  • Haikal A. Synthesis of guanosine-3′-(5-bromo-4-chloro-indol-3-yl)-phosphate (G-3′-BCIP). Coll. Czech. Chem. Commun. 1996; 61: 427–431
  • Hallas G. Chemistry of anthraquinonoid, polycyclic and miscellaneous colorants. Ch. 6. Colourants and Auxiliaries: Organic Chemiostry and Application Properties, J Shore. Society of Dyers and Colourists, Bradford 2002; 280–355
  • Hamers, THM. (2002). Toxic potency and effects of diffuse air pollution. Dissertation, Wageningen University, Netherlands. pp. 20, 53–54, 60, 74–75, 99, 127.
  • Hamers T, Molin KRJ, Koeman JH, Murk AJ. A small-volume bioassay for quantification of the esterase inhibiting potency of mixtures of organophosphate and carbamate insecticides in rainwater: development and optimization. Toxicol. Sci. 2000; 58: 60–67
  • Hasson EP, Laties GG. Separation and characterization of potato lipid acylhydrolases. Plant Physiol. 1976; 57: 142–147
  • Hatton JD, Lin L. Demonstration of specific neuronal cell groups in rat brain by β-galactosidase enzyme histochemistry. J. Neurosci. Methods 1992; 45: 147–153
  • Haugland RP. Detecting enzymatic activity incells using fluorogenic substrates. Biotech. Histochem. 1995; 70: 243–251
  • Henry, JB. (1979). Clinical Diagnosis and Management by Laboratory Methods. 16th ed. Vols 1 and 2. Philadelphia: Saunders. Vol. 1, pp. 592–593.
  • Henry JB. Clinical Diagnosis and Management by Laboratory Methods20th ed. Saunders, Philadelphia 2001
  • Heppelmann B, Eschenfelder V, Brossner R, Rahmann H. Histochemical localization of neuraminidase in the CNS of mice and fish by means of 5-brom-3-indolyl-α-ketoside of 5-N-acetyl-d-neuraminic acid. Acta Histochem. 1983; 73: 41–45
  • Holt SJ. A new principle for the histochemical localization of hydrolytic enzymes. Nature 1952; 9: 271–273
  • Holt SJ. The value of fundamental studies of staining reactions in enzyme histochemistry, with reference to indoxyl methods for esterases. J. Histochem. Cytochem. 1956; 4: 541–554
  • Holt SJ. Indigogenic staining methods for esterases. General Cytochemical Methods, JF Danielli. Academic Press, New York 1958; 375–398
  • Holt SJ, Hicks RM. The importance of osmiophilia in the production of stable azoindoxyl complexes of high contrast for combined enzyme cytochemistry and electron microscopy. J. Cell Biol. 1966; 29: 361–366
  • Holt SJ, O'Sullivan DG. Studies in enzyme histochemistry. I. Principles of cytochemical staining methods. Proc. R. Soc. Lond. B 1958; 148: 465–480
  • Holt SJ, Sadler PW. Studies in enzyme histochemistry. II. Synthesis of indigogenic substrates for esterases. Proc. R. Soc. Lond. B 1958a; 148: 481–494
  • Holt SJ, Sadler PW. Studies in enzyme histochemistry. III. Relationships between solubility, molecular association and structure in indigoid dyes. Proc. R. Soc. Lond. B 1958b; 148: 495–505
  • Holt SJ, Withers RFJ. Cytochemical localization of esterases using indoxyl derivatives. Nature 1952; 170: 1012–1014
  • Holt SJ, Withers RFJ. Studies in enzyme histochemistry. V. An appraisal of indigogenic reactions for esterase localization. Proc. Roy. Soc. Lond. B 1958; 148: 520–532
  • Hopwood DA. The isolation of mutants. Ch. 6. Methods in Microbiology, JR Norris, DW Ribbons. Academic Press, London 1970; 363–433
  • Hopsu-Havu VK, Arstila AV, Helminen HJ, Kalimo HO, Glenner GG. Improvements in the method for the electron microscopic localization of arylsulphatase activity. Histochemie 1967; 8: 54–64
  • Horobin RW. Uptake, distribution, and accumulation of dyes and fluorescent probes within living cells: a structure–activity modelling approach. Adv. Colour Sci. Technol. 2001; 4: 101–107
  • RW Horobin, Kiernan, JA, (2002). Conn's Biological Stains. A Handbook of Dyes, Stains and Fluorochromes for Use in Biology and Medicine10th ed.. BIOS, Oxford. pp. 184–187.
  • Horwitz JP, Freisler JV. Substrates for cytochemical demonstration of enzyme activity. V. Thymidine 3′- and 5′-(5-bromo-4-chloro-3-indolyl) phosphates. J. Med. Chem. 1970; 13: 1024–1025
  • Horwitz JP, Chua J, Curry RJ, Thomson AJ, Da Rooge MA, Fisher B, Mauricio J, Klundt I. Substrates for cytochemical demonstration of enzyme activity. I. Some substituted 3-indolyl-β-d-glycopyranosides. J. Med. Chem. 1964; 7: 574–575
  • Horwitz JP, Chua J, Noel M, Donatti JT, Freisler J. Substrates for cytochemical demonstration of enzyme activity. II. Some dihalo-3-indolyl phosphates and sulfates. J. Med. Chem. 1966; 9: 447
  • Horwitz JP, Easwaran CV, Kowalczyk LS. A kinetic study of the acid-catalyzed hydrolysis of some indolyl-β-d-glucopyranosides. J. Org. Chem. 1968a; 33: 3174–3178
  • Horwitz JP, Easwaran CV, Wolf PL. Kinetics of the hydrolysis of 5-bromo-4-chloroindol-3-yl-β-d-glucopyranosides by almond emulsin. Carbohydr. Res. 1968b; 2: 301–313
  • Horwitz JP, Easwaran CV, Wolf PL. Substrates for cytochemical demonstrationof enzyme activity. V. Kinetics of the hydrolysis of thymidine 3′-(5-bromo-4-chloroindol-3-yl) phosphate by phosphodiesterase II. Biochim. Biophys. Acta 1972; 276: 206–214
  • Hristova K, Lam M, Feild T, Sage TL. Transmitting tissue ECM distribution and composition, and pollen germinability in Sarcandra glabra and Chloranthus japonicus (Chloranthaceae). Ann. Bot. 2005; 96: 779–791
  • Hunger K. Industrial Dyes. Chemistry, Properties, Applications. Wiley-VCH. Weinheim. 2003; 204-215: 40–43
  • Hunter RL, Markert CL. Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science 1957; 125: 1294–1295
  • Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J. Molec. Biol. 1961; 3: 318–356
  • Jampens DT, Bailey J, Cook LJ, Constantin B, Van de Kerckhovel J, Gettemans J. Physarum amoebae express a distinct fragmin-like actin-binding protein that controls in vitro phosphorylation of actin by the actin-fragmin kinase. Eur. J. Biochem. 1999; 265: 240–250
  • Jauk V, Neubauer C, Szolgyenyi W, Vasicek L. Phenotypic and genotypic differentiation of Campylobacter spp. isolated from Austrian broiler farms: a comparison. Avian Pathol. 2003; 32: 33–37
  • Johnson I. Fluorescent staining of living cells. Ch. 5. Microscopy and Histology for Molecular Biologists. A User's Guide, JA Kiernan, I Mason. Portland Press, London 2002; 89–101
  • Jones RA, Deacon HJ, Allen SC. Two cases and a short discussion of purple urine bag syndrome. CME Geriatr. Med. 2003; 5: 84–87
  • Jovanovic A, Jovanovic S, Terzic A. Diadenosine polyphosphate signaling in the heart. Ch. 39. Heart Physiology and Pathophysiology, N Sperelakis, Y Kurachi, A Terzic, M Cohen. Academic Press, San Diego 2001; 693–704
  • Kiernan JA. Carboxylic esterases of the hypothalamus and neurohypophysis of the hedgehog. J. R. Microsc. Soc. 1964; 83: 297–306
  • Kiernan JA. Histological and Histochemical Methods: Theory and Practice3rd ed. Butterworth-Heinemann, Oxford 1999; 312–324
  • Kilian M, Bulow P. Rapid diagnosis of Enterobacteriaceae. I. Detection of bacterial glycosidases. Acta Pathol. Microbiol. Scand. Sect. B. Microbiol. 1976; 84: 245–251
  • Kirkeby S. The activity of non-specific esterase in the thyroid epithelial cells of the guinea pig as influenced by various inhibitors and activators. A histochemical study. Histochemistry 1976a; 48: 51–60
  • Kirkeby S. The effect of EDTA and metal cations on the 5-bromoindoxyl acetate esterase activity in the thyroid of the guinea pig. Histochem. J. 1976b; 8: 463–470
  • Kirkeby S, Blecher SR. Studies on the oxidizing system in Holt's medium for histochemical demonstration of esterase activity. Acta Histochem. 1978; 62: 44–56
  • Kobilkova J, Lojda J, Dohnalova A, Havrankova E. Cytological detection of cervical and endometrial carcinoma with other genital tract involvement. Acta Cytol. 2000; 44: 13–17
  • Koenen M, Ruther U, Muller-Hill B. Immunoenzymatic determination of expressed gene fragments cloned in the lac-z gene of Escherichia coli. EMBO J. 1982; 1: 509–512
  • Kulaev IS, Vagabof B, Kulakovskaya T. The Biochemistry of Inorganic Polyphosphates2nd ed. Wiley, ChichesterUK 2004; 45–63
  • Lehrer GM, Ornstein L. A diazo coupling method for the electron microscopic localization of cholinesterase. J. Biophys. Biochem. Cytol. 1959; 6: 399–406
  • Leitch AR, Schwarzacher T, Jackson D, Leitch IJ. In Situ Hybridization: a Practical Guide. BIOS Scientific Publishers & Royal Microscopical Society, Oxford 1994; 70
  • Ley AN, Bowers RJ, Wolfe S. Indoxyl-β-d-glucuronide, a novel chromogenic reagent for the specific detection and enumeration of Escherichia coli in environmental samples. Can. J. Microbiol. 1988; 34: 690–693
  • Ley, AN, Rickey, NE, Taylor, MJ. (1990). Escherichia coli (E. coli) test method. U.S. Patent 04923804.
  • Lojda Z. Indigogenic methods for glycosidases. I. An improved method for β-d-glucosidase and its application to localization studies of intestinal and renal enzymes. Histochemie 1970a; 22: 347–361
  • Lojda Z. Indigogenic methods for glycosidases. II. An improved method for β-galactosidase and its application to localization studies of the enzymes in the intestine and in other tissues. Histochemie 1970b; 23: 266–288
  • Lojda Z. Indigogenic methods for glycosidases. IV. An improved method for β-glucuronidase. Histochemie 1971; 27: 182–192
  • Lojda Z, Fric P. Sucrase-isomaltase and other brush border glycosidases in colorectal tumors. Acta Histochem. 1996; 98: 285–293
  • Lojda Z, Kraml J. Indigogenic methods for glycosidases. III. An improved method with 4-Cl-5-Br-3-indolyl-β-d-fucoside and its application in studies of enzymes in the intestine, kidney and other tissues. Histochemie 1971; 25: 195–207
  • Lojda Z, Slaby J, Kraml J, Kolinska J. Synthetic substrates in the histochemical demonstration of intestinal disaccharidases. Histochemie 1973; 34: 361–369
  • Lojda Z, Havrankova E, Slaby J. Histochemical demonstration of the intestinal hetero-β-galactosidase (glucosidase). Histochemistry 1974; 42: 271–286
  • Lu S. Rapid screening of recombinant plasmids. Ch. 19. E. coli Plasmid Vectors, N Casali, A Preston. Humana Press, Totowa, NJ 2003; 169–174
  • Luttke W, Klessinger M. Theoretische und spektroskopische Untersuchungen an Indigofarbstoffen, I. Infrarot und Lichtabsorption Spektren einfacher Indigofarbstoffe. Chem. Ber. 1964; 97: 2342–2355
  • MacFaddin JF. Biochemical tests for identification of medical bacteria3rd ed. Lippincott, Williams & Wilkins, Philadelphia 2000; 233–238
  • Manafi M, Rotter ML. A new plate medium for rapid presumptive identification and differentiation of Enterobacteriaceae. Int. J. Food Microbiol. 1991; 14: 127–134
  • Manafi M, Kneifel W, Bascomb S. Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol. Rev. 1991; 55: 335–348
  • Marcinek H, Weyler W, Deus-Neumann B, Zenk MH. Indoxyl-UDPG-glucosyltransferase from Baphicacanthus cusia. Phytochemistry 2000; 53: 201–207
  • Markert CL, Hunter RL. The distribution of esterases in mouse tissues. J. Histochem. Cytochem. 1959; 7: 42–49
  • Masson P, Froment MT, Fort S, Ribes F, Bec N, Balny C, Schopfer LM. Butyrylcholinesterase-catalyzed hydrolysis of N-methylindoxyl acetate: analysis of volume changes upon reaction and hysteretic behavior. Biochim. Biophys. Acta 2002; 1597: 229–243
  • Maugard T, Enaud E, Choisy P, Legoy MD. Identification of an indigo precursor from leaves of Isatis tinctoria (woad). Phytochemistry 2001; 58: 897–904
  • Maugard T, Enaud E, de la Sayette A, Choisy P, Legoy MD. Glucosidase-catalyzed hydrolysis if indican from leaves of Polygonum tinctorium. Biotechnol. Prog. 2002; 18: 1104–1108
  • KD McClatchey, (2002). Clinical Laboratory Medicine2nd ed.. Philadelphia: Lippincott, Williams & Wilkins.
  • McClay K, Boss C, Keresztes I, Steffan RJ. Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Appl. Envir. Microbiol. 2005; 71: 5476–5483
  • McGadey J. Modified indoxyl acetate technique for the histochemical demonstration of non-specific esterases in the mouse testis. J. Med. Lab. Technol. 1967; 24: 126–128
  • McGadey J. A tetrazolium method for non-specific alkaline phosphatase. Histochemie 1970; 23: 180–184
  • McIsaac G, Kiernan JA. Complete staining of neuromuscular innervation with bromoindigo and silver. Stain Technol. 1974; 49: 211–214
  • Michel RH, Lazar J, McGovern PE. The chemical composition of the indigoid dyes derived from the hypobranchial glandular secretions of Murex molluscs. J. Soc. Dyers Colourists 1992; 108: 145–150
  • Millar IT, Springall HD. Sidgwick's The Organic Chemistry of Nitrogen3rd ed. Clarendon Press, Oxford 1966; 658–659
  • Miller JH. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1972; 48
  • Minami Y, Takao H, Kanafuji T, Miura K, Kondo M, Hara-Nishimura I, Nishimura M, Matsubara H. β Glucosidase in the indigo plant: intracellular localization and tissue specific expression in leaves. Plant Cell Physiol. 1997; 38: 1069–1074
  • Mohler WA, Blau HM. Gene expression and cell fusion analysed by lacZ complementation in mammalian cells. Proc. Natl Acad. Sci. USA 1996; 93: 12423–12427
  • Murdock D, Ensley BD, Serdar C, Thalen M. Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Nature Biotechnol. 1993; 11: 381–386
  • Neale G, Tabaqchali S. Value of measuring urinary indican excretion. Gut 1966; 7: 711
  • Nettleton GS, Martin AW. Separation of fuchsin alanalogs using thin layer chromatography. Stain Technol. 1979; 54: 213–216
  • Oberthur C, Schneider B, Graf H, Hamburger M. The elusive indigo precursors in woad (Isatis tinctoria L.) identification of the major indigo precursor, isatan A, and a structure revision of isatan B. Chem. Biodivers. 2004; 1: 174–182
  • O'Connor CJ, Walde P, Wallace RG. Bile salt roles in bile-salt-stimulated lipase activity. J. Pediat. Gastroent. Nutr. 1986; 5: 622–629
  • Okada E. An improved enzyme-histochemical method for identification of lymphatic capillaries on paraffin sections. Lymphology 1994; 27 Suppl: 732–735
  • Oliver, C, Lewis, PR, Stoward, PJ. (1991). Esterases. Ch. 29, In:. PJ Stoward, and, Pearse, AGE, Histochemistry, Theoretical and Applied, Vol. 3. Churchill Livingstone, Edinburgh. pp. 219–239.
  • BL Oser, (1965). Hawk's Physiological Chemistry14th ed.. New York: Blakiston (McGraw-Hill).
  • Ouyang J, Shao X, Li J. Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the trytophan biosynthetic pathway in Arabidopsis thaliana. Plant J. 2000; 24: 327–333
  • Pathak SP, Gopal K. Rapid detection of Escherichia coli as indices of faecal pollution in water. Ind. J. Microbiol. 2001; 41: 139–151
  • Pearson B, Defendi B. A comparison between the histochemical demonstration of non-specific esterase activity by 5-bromoindoxyl acetate and naphthol AS acetate. J. Histochem. Cytochem. 1957; 5: 72–83
  • Pearson B, Wolf PL, Vazquez J. A comparative study of a series of new indolyl compounds to localize β-galactosidase in tissues. Lab. Invest. 1963; 12: 1249–1259
  • Pearson B, Standen AC, Esterly JR. Histochemical β-glucuronidase distribution in mammalian tissue as detected by 5-bromo-4-chloroindol-3-yl-β-glucopyruroniside. Lab. Invest. 1967; 17: 217–224
  • Pepler WJ, Pearse AGE. The histochemistry of the esterases of the rat brain, with special reference to those of the hypothalamic nuclei. J. Neurochem. 1957; 1: 193–202
  • Poggi P, Icaro-Cornaglia A, Coletta M, Kelly R, Cossu G. Localization of β-d-galactosidase activity in semithin epon sections of embryonic tissues using differential interference contrast optics. Acta Anat. 1997; 159: 218–221
  • Popovic-Uroic T, Patton CM, Nicholson MA, Kiehlbauch JA. Evaluation of the indoxyl acetate hydrolysis test for rapid differentiation of Campylobacter, Helicobacter and Wolinella species. J. Clin. Microbiol. 1990; 28: 2335–2339
  • Przelecka A, Ejsmont G, Sarzala G, Taracha M. Alkaline phosphatase activity and synthesis of intestinal phospholipids. J. Histochem. Cytochem. 1962; 10: 596–600
  • Pugh D. The fine localization of N-acetyl-β-glucosaminidase in rat tissues using an indoxyl substrate. Ann. Histochim. 1972a; 17: 55–64
  • Pugh D. The cytochemical localization of β-galactosidase. Ann. Histochim. 1972b; 17: 89–90
  • Rambach A. New plate medium for facilitated differentiationof Salmonella spp. from Proteus spp. and other enteric bacteria. Appl. Envir. Microbiol. 1990; 56: 301–303
  • Rui L, Reardon KF, Wood TK. Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl. Microbiol. Biotechnol. 2005; 66: 422–429
  • Sadar MH, Laidler KJ. Transient kinetics of the acetylcholinesterase catalyzed hydrolysis of N-methylindoxyl acetate. Can. J. Biochem. 1975; 53: 380–387
  • Sadar MH, Kuan S, Guilbault GG. Trace analysis of pesticides using cholinesterase from human serum, rat liver, electric eel, bean leaf beetle and white fringe beetle. Anal. Chem. 1970; 42: 1770–1774
  • Saito M, Hagita H, Iwabuchi Y, Fujii I, Ikeda K, Ito M. Fluorescent cytochemical detection of sialidase activity using 5-bromo-4-chloroindol-3-yl-α-d-N-acetylneuraminic acid as the substrate. Histochem. Cell Biol. 2002; 117: 453–458
  • Sakanaka M, Magari S, Shibasaki T, Shinoda K, Kohno J. A reliable method combining horseradish peroxidase with immuno-α-galactosidase staining. J. Histochem. Cytochem. 1988; 36: 1091–1096
  • Sanches-Ramos J, Song S, Dailey M, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Zigova T, Sanberg PR, Snyder EY. The X-gal caution in neural transplantation studies. Cell Transplant. 2000; 9: 657–667
  • Seghatchian MJ, Watts RL, Watts DC. Rapid location of acetylcholinesterase and other esterases after separation of enzyme components on columns or by electrophoresis by means of the fluorescent hydrolysis products of the substrate N-methylindoxyl acetate. Biochem. Soc. Trans. 1973; 1: 747–749
  • Sehlinger TE, Nettleton GS. Separation of fuchsin homologs using high performance liquid chromatography. Stain Technol. 1987; 62: 291–297
  • Seixas de Melo J, Monra AP, Melo MJ. Photophysical and spectroscopic studies of indigo derivatives in their keto and leuco forms. J. Phys. Chem. A 2004; 108: 6975–6981
  • Shewry PR, Napier JA, Sayanova O, Smith M, Cooke DT, Stoker G, Hill J, Stobart AK, Lapinskas P. The use of biotechnology to develop new crops and products. Domestication, Production and Utilisation of New Crops, J Smart, N Haq. International Centre for Under-Utilized Crops, SouthamptonUK 1997; 76–87
  • Shnitka TK, Seligman AM. A role of esteratic inhibition on localization of esterase and the simultaneous cytochemical demonstration of inhibitor sensitive and resistant enzyme species. J. Histochem. Cytochem. 1961; 9: 504–527
  • J Shore, (2002). Colourants and Auxiliaries: Organic Chemistry and Application Properties2nd ed.. Vol. 1. “Colourants”. Society of Dyers and Colourists, Bradford. pp. 316–321.
  • Snyder AP, Wang TT, Greenberg DB. Pattern recognition analysis of in vivo enzyme substrate fluorescence velocities in microorganism detection and identification. Appl. Envir. Microbiol. 1986; 51: 969–977
  • Snyder, AP, Greenberg, DB, Scarpino, PV. (1992). Viable microorganism detection by induced fluorescence. U.S. Patent 5089395.
  • Society of Dyers and Colourists. Colour Index3rd ed. Society of Dyers and Colourists, BradfordUK 1971; 4: 4616–4639
  • Speel EJM, Jansen MPHM, Ramaekers FCS, Hopman AHN. A novel triple-color detection procedure for brightfield microscopy, combining in situ hybridization with immunocytochemistry. J. Histochem. Cytochem. 1994; 42: 1299–1307
  • Stoward, PJ, Pearse, AGE. (1991). Histochemistry, Theoretical and Applied4th ed., Vol. 3. Enzyme Histochemistry. Edinburgh: Churchill-Livingstone. pp. 4–12, 221–223, 600, 607–608.
  • Strobel J, Groger D. Uber das Vorkommen von Indigovorstufen in Isatis-species. Biochem. Physiol. Pflanz. 1989; 184: 321–327
  • Su HCF, Tsou KC. Synthesis of bromo-substituted indoxyl esters for cytochemical demonstration of esterase activity. J. Am. Chem. Soc. 1960; 82: 1187–1189
  • Suzuki T, Takahashi T, Guo CT, Hidari KLPJ, Miyamoto D, Goto H, Kawaoka Y, Suzuki Y. Sialidase activity of influenza A virus in an endocytic pathway enhances viral replication. J. Virol. 2005; 79: 11705–11715
  • Tague BW, Gallant P, Goodman HM. Expression analysis of an Arabidopsis C2H2 zinc finger protein gene. Plant Mol. Biol. 1997; 32: 785–796
  • Tsou KC, Su HCF. On the use of potassium ferricyanide-ferrocyanide with 5-bromoindoxyl acetate in the histochemical detection of esterase. J. Histochem. Cytochem. 1963; 11: 561–562
  • Tsou KC, Su HCF, Rabiger DJ, Heymann H, Seligman AM. Synthesis of 3-indolyl and 5-bromo-3-indolyl phosphate for histochemical demonstration of alkaline phosphatase. J. Med. Chem. 1967; 10: 662–664
  • Tsou KC, Aoyagi S, Miller EE. Synthesis of 5-iodo-3-indolyl phosphodiesters of 5-fluorodeoxyuridine as possible cancer chemotherapeutic agents. J. Med. Chem. 1970; 13: 765–768
  • Tsou KC, Lo KW, Ledis SL, Miller EE. Indigogenic phosphodiesters as potential chromogenic cancer chemotherapeutic agents. J. Med. Chem. 1972; 15: 1221–1225
  • Tsou KC, Hendricks J, Gupta PD, Lo KW. A new indigogenic method for the light and electron microscopic demonstration of 5′-nucleotide phosphodiesterases. Histochem. J. 1974; 6: 327–337
  • Tubb RS, Liljestrom PL. A colony color method which differentiates α-galactosidase positive strains of yeast. J. Inst. Brewing 1986; 92: 588–590
  • Tuccari G, Giuffre G, Crisafulli C, Monici MC, Toscano A, Vita G. Quantitation of argyrophilic nucleolar organizer regions in regenerating muscle fibers in Duchenne and Becker muscular dystrophies and polymyositis. Acta Neuropathol. (Berl.) 1999; 97: 247–252
  • Van der Loos C, Das PK, Houthoff H-J. An immunoenzyme triple staining method using both polyclonal and monoclonal antibodies from the same species. Application of combined direct, indirect, and avidin-biotin complex (ABC) technique. J. Histochem. Cytochem. 1987; 35: 1199–1204
  • Van der Loos CM, Becker AE, Van den Oord JJ. Practical suggestions for successful immunoenzyme double-staining experiments. Histochem. J. 1993; 25: 1–13
  • Van Noorden CJF, Frederiks WM. Enzyme Histochemistry: a Laboratory Manual of Current Methods. Oxford University Press & Royal Microscopical Society, Oxford 1992; 23–87, 88
  • Van Noorden S. Immunohistochemical methods. Ch. 9. Microscopy and Histology for Molecular Biologists: a User's Guide, JA Kiernan, I Mason. Portland Press, London 2002; 219–268
  • Vincent SF, Bell PJL, Bissinger P, Nevalainen KMH. Comparison of melibiase utilizing baker's yeast strains produced by genetic engineering and classical breeding. Lett. Appl. Microbiol. 1999; 28: 148–152
  • von Deimling OH. Genetic variation as a tool for histochemical localization of a nonspecific esterase. Histochemistry 1988; 88: 641–643
  • Watkins WD, Rippey SR, Clavet CR, Kelley-Reitz DJ, Burkhardt W. Novel compound for identifying Escherichia coli. Appl. Envir. Microbiol. 1988; 54: 1874–1875
  • Weiss DJ, Liggitt D, Clark JG. In situ histochemical detection of β-galactosidase activity in lung: assessment of X-gal reagent in distinguishing lacZ gene expression and endogenous α-galactosidase activity. Human Gene Ther. 1997; 8: 1545–1554
  • West ES, Todd WR, Mason HS, Van Bruggen JT. Textbook of Biochemistry4th ed. Macmillan, New York 1966; 1458
  • Wille E, Luttke W. 4,4,4′,4′-tetramethyl-)-2,2′-bipyrolidine-3,3′-dione, a compound having the basic chromophore system of indigo. Angew. Chem. Internat. Ed. English 1971; 10: 803–804
  • Witmer MR, Falcomer CM, Weiner MP, Kay MS, Begley TP, Ganem B, Scheraga HA. U-3′-BCIP: a chromogenic substrate for the detection of RNasa A in recombinant DNA expression systems. Nucl. Acids Res. 1991; 19: 1–4
  • Wolf PL, Horwitz JP, Vazquez J, von der Muehll E. A new histochemical stain for leukocyte alkaline phosphatase. Enzymologia 1968; 35: 154–156
  • Wolf PL, Horwitz JP, Vazquez J, Chua J, Pak MS, von der Muehll E. The indigogenic reaction for histochemical demonstration of sulfatase. Proc. Soc. Exp. Biol. Med. 1967a; 124: 1207–1209
  • Wolf PL, Horwitz JP, Vazquez J, Chua J, Pak MS, von der Muehll E. The indigogenic reaction for histochemical detection of alkaline and acid phosphatase. Experientia 1967b; 23: 183–185
  • Wolf PL, Horwitz JP, Freisler J, Vazquez J, von der Muehll E. Application of the indigogenic principle for the histochemical demonstration of ribonuclease. Experientia 1968a; 24: 1290–1291
  • Wolf PL, Horwitz JP, Freisler J, Vazquez J, von der Muehll E. The indigogenic reaction for the histochemical demonstration of β-xylosidase. Enzymologia 1968b; 34: 18–22
  • Wolf PL, Horwitz JP, Freisler J, Vazquez J, von der Muehll E. The intracellular localization of exonuclear and endonuclear "phosphodiesterase" activity by histochemical methods. Biochim. Biophys. Acta 1968c; 159: 212–214
  • Wolf, PL, Horwitz, J, Mandeville, R, Vazquez, R, von der Muehll, E. (1969). A new and unique method for detecting bacterial deoxyribonuclease in the clinical laboratory. Tech. Bull. Regist. Med. Technol. 39: 83–86, (cited by Manafi et al. 1991 and MacFaddin 2000).
  • Woolf AL, Coers C. Pathological anatomy of the intramuscular nerve endings. Ch. 8. Disorders of Voluntary Muscle, JN Walton. Churchill-Livingstone, Edinburgh 1974; 274–309
  • Wouters J, Verhecken A. High performance liquid chromatography of blue and purple indigoid natural dyes. J. Soc. Dyers Colourists 1991; 107: 266–269
  • Xia ZQ, Zenk MH. Biosynthesis of indigo precursors in higher plants. Phytochemistry 1992; 31: 2695–2697
  • Yagi Y, Kimura S, Imanishi Y. Interaction of gramicidin S analogs with lipid bilayer membrane. Int. J. Peptide Protein Res. 1990; 36: 18–25
  • Yanofsky C. Indole-3-glycerol phosphate, an intermediate in the biosynthesis of indole. Biochim. Biophys. Acta 1956; 20: 438–439
  • Zollinger H. Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments3rd ed. Wiley-VCH, Weinheim 2003; 259–268

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.