329
Views
0
CrossRef citations to date
0
Altmetric
Articles

Protective effects of chlorogenic acid against cyclophosphamide induced liver injury in mice

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Chen Y, Jia Y, Song W, Zhang L. 2018b. Therapeutic potential of nitrogen mustard based hybrid molecules. Front Pharmacol. 9:1453. doi: 10.3389/fphar.2018.01453.
  • Chen DY, Pan D, Tang SL, Tan ZH, Zhang YN, Fu YF, Lü GH, Huang QH. 2018a. Administration of chlorogenic acid alleviates spinal cord injury via TLR4/NF-κB and p38 signaling pathway anti-inflammatory activity. Mol Med Rep. 17:1340–1346. doi: 10.3892/mmr.2017.7987.
  • Chen LX, Qi YL, Qi Z, Gao K, Gong RZ, Shao ZJ, Liu SX, Li SS, Sun YS. 2019. A comparative study on the effects of different parts of panax ginseng on the immune activity of cyclophosphamide-induced immunosuppressed mice. Molecules. 24:6. doi: 10.3390/molecules24061096.
  • Chen JB, Zhang CC, Xia Q, Liu D, Tan XH, Li YD, Cao Y. 2020. Treatment with subcritical water-hydrolyzed citrus pectin ameliorated cyclophosphamide-induced immunosuppression and modulated gut microbiota composition in ICR mice. Molecules. 25:1302. doi: 10.3390/molecules25061302.
  • Ding Y, Cao ZY, Cao L, Ding G, Wang ZZ, Xiao W. 2017. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci Rep. 7:45723. doi: 10.1038/srep45723.
  • El-Serafi I, Afsharian P, Moshfegh A, Hassan M, Terelius Y, Qiu X. 2015. Cytochrome P450 oxidoreductase influences CYP2B6 activity in cyclophosphamide bioactivation. PloS One. 10:e0141979. doi: 10.1371/journal.pone.0141979.
  • Feldman AT, Wolfe D. 2014. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol. 1180:31–43.
  • Fu SL, Wu CH, Wu TT, Yu H, Yang S, Hu Y. 2017. Preparation and characterisation of chlorogenic acid-gelatin: a type of biologically active film for coating preservation. Food Chem. 221:657–663. doi: 10.1016/j.foodchem.2016.11.123.
  • Gouthamchandra K, Sudeep HV, Venkatesh BJ, Shyam Prasad K. 2017. Chlorogenic acid complex (CGA7), standardized extract from green coffee beans exerts anticancer effects against cultured human colon cancer HCT-116 cells. Food Sci Hum Wellness. 6:147–153. doi: 10.1016/j.fshw.2017.06.001.
  • Habibi E, Shokrzadeh M, Chabra A, Naghshvar F, Keshavarz-Maleki R, Ahmadi A. 2015. Protective effects of Origanum vulgare ethanol extract against cyclophosphamide-induced liver toxicity in mice. Pharm Biol. 53:10–15. doi: 10.3109/13880209.2014.908399.
  • Jain A, Malhotra P, Suri V, Varma S, Das A, Mitra S. 2016. Cholestasis in a patient of multiple myeloma: a rare occurrence of bortezomib induced liver injury. Ind J Hematol Blood Trans. 32:181–183. doi: 10.1007/s12288-016-0665-z.
  • Jiang ZH, Guo X, Zhang KP, Sekaran G, Cao BR, Zhao QQ, Zhang SQ, Kirby GM, Zhang XY. 2019. The essential oils and eucalyptol from Artemisia vulgaris prevent acetaminophen-induced liver injury by activating Nrf2–Keap1 and enhancing APAP clearance through non-toxic metabolic pathway. Front Pharmacol. 10:782. doi: 10.3389/fphar.2019.00782.
  • Kim H, Pan JH, Kim SH, Lee JH, Park J-W. 2018. Chlorogenic acid ameliorates alcohol-induced liver injuries through scavenging reactive oxygen species. Biochimie. 150:131–138. doi: 10.1016/j.biochi.2018.05.008.
  • Kocahan S, Dogan Z, Erdemli E, Taskin E. 2017. Protective effect of quercetin against oxidative stress-induced toxicity associated with doxorubicin and cyclophosphamide in rat kidney and liver tissue. Iran J Kidn Dis. 11:124–131.
  • Liang HQ, Yang JE, Tang JM, Wu CC, Li HS, Chen SD. 2016. Optimization of dosage ratio of chlorogenic acid and gardenia glycosides in the treatment of rats with fatty liver disease induced by high-fat feed. J Trad Chin Med. 36:683–688. doi: 10.1016/S0254-6272(16)30090-5.
  • Li XX, Jiang ZH, Zhou B, Chen C, Zhang XY. 2019. Hepatoprotective effect of gastrodin against alcohol–induced liver injury in mice. J Physiol Biochem. 75:29–37. doi: 10.1007/s13105-018-0647-8.
  • Lin L, Guan H, Li R, Liao X, Zhao F, Wang M, Li J, Xu G, He X, Zhang J, Li Y, Wang Y, Zhou M, Liao S. 2019. Auriculatone sulfate effectively protects mice against acetaminophen-induced liver injury. Molecules. 24:3642. doi: 10.3390/molecules24203642.
  • Lushchak VI. 2014. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interac. 224:164–175. doi: 10.1016/j.cbi.2014.10.016.
  • Lushnikova EL, Molodykh OP, Nepomnyashchikh LM, Bakulina AA, Sorokina YA. 2011. Ultrastructural picture of cyclophosphamide–induced damage to the liver. Bull Exp Biol Med. 151:751–756. doi: 10.1007/s10517-011-1432-7.
  • Mahmoud AM, Al Dera HS. 2015. 18β-glycyrrhetinic acid exerts protective effects against cyclophosphamide-induced hepatotoxicity: potential role of PPARγ and Nrf2 upregulation. Genes Nutr. 10:41. doi: 10.1007/s12263-015-0491-1.
  • Mansour DF, Saleh DO, Mostafa RE. 2017. Genistein ameliorates cyclophosphamide - induced hepatotoxicity by modulation of oxidative stress and inflammatory mediators. Open Access Maced J Med Sci. 5:836–843. doi: 10.3889/oamjms.2017.093.
  • Mousa AM, El-Sammad NM, Abdel-Halim AH, Anwar N, Khalil WKB, Nawwar M, Hashim AN, Elsayed EA, Hassan SK. 2019. Lagerstroemia speciosa (L.) Pers leaf extract attenuates lung tumorigenesis via alleviating oxidative stress, inflammation and apoptosis. Biomolecules. 9:871. doi: 10.3390/biom9120871.
  • Nabavi SF, Tejada S, Setzer WN, Gortzi O, Sureda A, Braidy N, Daglia M, Manayi A, Nabavi SM. 2017. Chlorogenic acid and mental diseases: from chemistry to medicine. Curr Neuropharmacol. 15:471–479. doi: 10.2174/1570159X14666160325120625.
  • Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, Xia F, Modarresi-Ghazani F, Hya W, Zhou XH. 2018. Chlorogenic acid (CGA): a pharmacological review and call for further research. Biomed Pharmacother. 97:67–74. doi: 10.1016/j.biopha.2017.10.064.
  • Nuño-Lámbarri N, Domínguez-Pérez M, Baulies-Domenech A, Monte MJ, Marin JJ, Rosales-Cruz P, Souza V, Miranda RU, Bucio L, Montalvo-Jave EE, Concepción Gutiérrez-Ruiz M, García-Ruiz C, Fernández-Checa JC, Gomez-Quiroz LE. 2016. Liver cholesterol overload aggravates obstructive cholestasis by inducing oxidative stress and premature death in mice. Oxid Med Cell Longev. 6:1–13. doi: 10.1155/2016/9895176.
  • Rehman AU, Majeed W, Aslam B, Faisal MN, Iftikhar A, Sultana A. 2017. Evaluation of biomedical importance of chlorogenic acid in the treatment of diabetes mellitus in in-vivo alloxan induced diabetic rat models. Int J Adv Res. 5:363–370. doi: 10.21474/IJAR01/3820.
  • Santana-Gálvez J, Luis CZ, Jacobo-Velázquez D. 2017. Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules. 22:pii–E358. doi: 10.3390/molecules22030358.
  • Sheweita SA, El-Hosseiny LS, Nashashibi MA, Lehmler H-J. 2016. Protective effects of essential oils as natural antioxidants against hepatotoxicity induced by cyclophosphamide in mice. PloS One. 11:e0165667. doi: 10.1371/journal.pone.0165667.
  • Shi HT, Dong L, Jiang J, Zhao JH, Zhao G, Dang XY, Lu XL, Jia M. 2013. Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway. J Books. 303:107–114. doi: 10.1016/j.tox.2012.10.025.
  • Shi A, Shi H, Wang Y, Liu X, Cheng Y, Li H, Zhao H, Wang S, Dong L. 2018. Activation of Nrf2 pathway and inhibition of NLRP3 inflammasome activation contribute to the protective effect of chlorogenic acid on acute liver injury. Int Immunopharmacol. 54:125–130. doi: 10.1016/j.intimp.2017.11.007.
  • Wang B, Ma Y, Kong X, Ding X, Gu H, Chu T, Ying W. 2014. NAD(+) administration decreases doxorubicin-induced liver damage of mice by enhancing antioxidation capacity and decreasing DNA damage. Chem Biol Interact. 212:65–71. doi: 10.1016/j.cbi.2014.01.013.
  • Wei MJ, Zheng ZY, Shi L, Jin Y, Ji L. 2018. Natural polyphenol chlorogenic acid protects against acetaminophen-induced hepatotoxicity by activating ERK/Nrf2 antioxidative pathway. Toxicol Sci. 162:99–112. doi: 10.1093/toxsci/kfx230.
  • Xi Y, Jiao WX, Cao JK, Jiang W, Gallyas F. 2017. Effects of chlorogenic acid on capacity of free radicals scavenging and proteomic changes in postharvest fruit of nectarine. PloS One. 12:e0182494. doi: 10.1371/journal.pone.0182494.
  • Yang B, Qiu Y, Wang LP, Zhang XL. 2009. Studies on the anti-inflammatory molecular mechanism of chlorogenic acid extracted from Lonicera confusa DC in vitro. Chin Pharmacol Bull. 4:542–545.
  • Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungǎu SG, Abdel-Daim MM, Atanasov AG. 2019. Antioxidants: scientific literature landscape analysis. Oxid Med Cell Longev. 2019:1–11. doi: 10.1155/2019/8278454.
  • Yu HC, Huang SM, Lin WM, Kuo CH, Shieh CJ. 2019. Comparison of artificial neural networks and response surface methodology towards an efficient ultrasound-assisted extraction of chlorogenic acid from Lonicera japonica. Molecules. 24:2304. doi: 10.3390/molecules24122304.
  • Yun N, Kang JW, Lee SM. 2012. Protective effects of chlorogenic acid against ischemia/reperfusion injury in rat liver: molecular evidence of its antioxidant and anti-inflammatory properties. J Nutr Biochem. 23:1249–1255. doi: 10.1016/j.jnutbio.2011.06.018.
  • Zhai JX, Zhang F, Gao SH, Chen L, Feng G, Yin J, Chen WS. 2017. Time- and NADPH-dependent inhibition on CYP3A by gomisin a and the pharmacokinetic interactions between gomisin a and cyclophosphamide in rats. Molecules. 22:1298. doi: 10.3390/molecules22081298.
  • Zhang ZH, Pan TW. 2017. HPLC determination of chlorogenic acid in Verbena officinalis L. extract and it in vitro antibacterial activity. Biomed Res. 28:3996–4001.
  • Zhao H, Yuan X, Li DF, Chen HM, Jiang JT, Wang ZP, Sun XL, Zheng QS. 2013. Isoliquiritigen enhances the antitumour activity and decreases the genotoxic effect of cyclophosphamide. Molecules. 18:8786–8798. doi: 10.3390/molecules18088786.
  • Zhu H, Long MH, Wu J, Wang MM, Li XY, Shen H, Xu JD, Zhou L, Fang ZJ, Luo Y, Li SL. 2015. Ginseng alleviates cyclophosphamide-induced hepatotoxicity via reversing disordered homeostasis of glutathione and bile acid. Sci Rep. 5:1–14. doi: 10.1038/srep17536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.