442
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Surface defect detection of CFRP materials based on infrared thermography and Attention U-Net algorithm

, , , , , & show all
Pages 238-257 | Received 06 Nov 2022, Accepted 12 Mar 2023, Published online: 22 Mar 2023

References

  • Raišutis R, Kažys R, Žukauskas E, et al. Application of ultrasonic guided waves for non-destructive testing of defective CFRP rods with multiple delaminations. NDT E Int. 2010 07 01;43(5):416–424.
  • Dong Y, Xia C, Yang J, et al. Spatio-temporal 3-D residual networks for simultaneous detection and depth estimation of CFRP subsurface defects in lock-in thermography. IEEE Trans Ind Inform. 2022;18(4):2571–2581.
  • Wei J, Wang F, Liu J, et al. A laser arrays scan thermography (LAsST) for the rapid inspection of CFRP composite with subsurface defects. Compos Struct. 2019 10 15;226:111201. DOI:10.1016/j.compstruct.2019.111201.
  • Séguin-Charbonneau L, Walter J, Théroux L-D, et al. Automated defect detection for ultrasonic inspection of CFRP aircraft components. NDT E Int. 2021 09 01;122:102478. DOI:10.1016/j.ndteint.2021.102478.
  • Petrò S, Reina C, Moroni G. X-ray CT-Based defect evaluation of continuous CFRP additive manufacturing. J Nondestr Eval. 2021;40(1). DOI:10.1007/s10921-020-00737-7
  • Barile C, Casavola C, Pappalettera G, et al. Experimental wavelet analysis of acoustic emission signal propagation in CFRP. Eng Fract Mech. 2019 04 01;210:400–407. DOI:https://doi.org/10.1016/j.engfracmech.2018.05.030.
  • Wang Q, Xia R, Liu Q, et al. Pixel-based thermal sequence processing algorithm based on R2 fractile threshold of non-linear fitting in active infrared thermography. Infrared Phys Technol. 2020 09 01;109:103422. DOI:10.1016/j.infrared.2020.103422.
  • Swiderski W. Non-destructive testing of CFRP by laser excited thermography. Compos Struct. 2019 02 01;209:710–714. DOI:10.1016/j.compstruct.2018.11.013.
  • Peeters J, Ibarra-Castanedo C, Sfarra S, et al. Robust quantitative depth estimation on CFRP samples using active thermography inspection and numerical simulation updating. NDT E Int. 2017 04 01;87:119–123. DOI:10.1016/j.ndteint.2017.02.003.
  • Hauffe A, Hähnel F, Wolf K. Comparison of algorithms to quantify the damaged area in CFRP ultrasonic scans. Compos Struct. 2020 03 01;235:111791. DOI:10.1016/j.compstruct.2019.111791.
  • Chen H, Zhang Z, Yin W, et al. Surface defect characterization and depth identification of CFRP material by laser line scanning. NDT E Int. 2022 09 01;130:102657. DOI:10.1016/j.ndteint.2022.102657.
  • Li Y, Zhang W, Yang Z-W, et al. Low-velocity impact damage characterization of carbon fiber reinforced polymer (CFRP) using infrared thermography. Infrared Phys Technol. 2016 05 01;76:91–102. DOI:10.1016/j.infrared.2016.01.019.
  • Wang Q, Hu Q, Qiu J, et al. Using differential spread laser infrared thermography to detect delamination and impact damage in CFRP. Infrared Phys Technol. 2020 05 01;106:103282. DOI:10.1016/j.infrared.2020.103282.
  • Hai Z, Fernandes H, Hassler U, et al. Comparative study of microlaser excitation thermography and microultrasonic excitation thermography on submillimeter porosity in carbon fiber reinforced polymer composites. Opt Eng. 2016;56(4):1–9, 9/1.
  • He Z, Wang H, He Y, et al. Joint scanning laser thermography defect detection method for carbon fiber reinforced polymer. IEEE Sens J. 2020;20(1):328–336.
  • Peng Y, Huang S, Deng B, et al. Joint scanning electromagnetic thermography for industrial motor winding defect inspection and quantitative evaluation. IEEE Trans Ind Inform. 2021;17(10):6832–6841.
  • Meshkizadeh P, Farahani M. Developing effective thermal signal processing to improve thermographic non-destructive inspection of metallic components. Case Stud NondestrTest Eval. 2022;37(4):367–385.
  • Kaur K, Mulaveesala R, Mishra P. Constrained autoencoder-based pulse compressed thermal wave imaging for sub-surface defect detection. IEEE Sens J. 2022;22(18):17335–17342.
  • Deng B, Li X, Wang H, et al. Line scanning thermography reconstruction algorithm for defects inspection with novel velocity estimation and image registration. IEEE Sens J. 2021;21(10):11555–11568.
  • Ruan L, Gao B, Wu S, et al. DeftectNet: joint loss structured deep adversarial network for thermography defect detecting system. Neurocomputing. 2020 12 05;417:441–457. DOI:10.1016/j.neucom.2020.07.093.
  • Hu B, Gao B, Woo WL, et al. A lightweight spatial and temporal multi-feature fusion network for defect detection. IEEE Trans Image Process. 2021;30:472–486.
  • Wang F, Liu J, Dong B, et al. Optimization of thermal-wave radar thermography by transverse heat flow suppression technique for accurate defect detection of CFRP laminates. IEEE Trans Instrum Meas. 2021;70:1–10.
  • Tang Q, Gao S, Liu Y, et al. Infrared image segmentation algorithm for defect detection based on FODPSO. Infrared Phys Technol. 2019 11 01;102:103051. DOI:10.1016/j.infrared.2019.103051.
  • Liu J, Zhang Z, Lin Z, et al. Characterization method of surface crack based on laser thermography. IEEE Access. 2021;9:76395–76402.
  • Wang Z, Wan L, Xiong N, et al. Variational level set and fuzzy clustering for enhanced thermal image segmentation and damage assessment. NDT E Int. 2021 03 01;118:102396. DOI:10.1016/j.ndteint.2020.102396.
  • Zhou D, Chi M. Pulse-coupled neural network and its optimization for segmentation of electrical faults with infrared thermography. Appl Soft Comput. 2019 04 01;77:252–260. DOI:10.1016/j.asoc.2018.10.056.
  • Ronneberger O, Fischer P, Brox T, “U-net: convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention; 2015; Munich, Germany. Springer, p. 234–241.
  • Yu J, He Y, Liu H, et al., “An improved U-Net model for infrared image segmentation of wind turbine blade,” IEEE Sensors Journal, pp. 1, 2022, doi: 10.1109/JSEN.2022.3224837.
  • Vaswani A, Shazeer N, Parmar N, et al., “Attention is all you need,” presented at the Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017.
  • Oktay O, Schlemper J, Folgoc LL, et al. Attention u-net: learning where to look for the pancreas. arXiv Preprint arXiv: 180403999. 2018, doi:10.48550/arXiv.1804.03999.
  • Zuo R, Zhang G, Zhang R, et al. A deformable attention network for high-resolution remote sensing images semantic segmentation. IEEE Trans Geosci Remote Sens. 2022;60:1–14.
  • Wang Z, Zou Y, Liu PX. Hybrid dilation and attention residual U-Net for medical image segmentation. Comput Biol Med. 2021 07 01;134:104449. DOI:10.1016/j.compbiomed.2021.104449.
  • Yang J, Wang W, Lin G, et al. Infrared thermal imaging-based crack detection using deep learning. IEEE Access. 2019;7:182060–182077.
  • Shannon CE. A mathematical theory of communication. Bell Syst Techn J. 1948;27(3):379–423.
  • Abdullah-Al-Wadud M, Kabir MH, Dewan MAA, et al. A dynamic histogram equalization for image contrast enhancement. IEEE Trans Consum Electron. 2007;53(2):593–600.
  • Tomasi C, Manduchi R, “Bilateral filtering for gray and color images,” in Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), 7-7 Jan. 1998 1998, pp. 839–846, doi: 10.1109/ICCV.1998.710815.
  • Ni X, Liu H, Ma Z, et al. Detection for rail surface defects via partitioned edge feature. IEEE Trans Intell Transp Syst. 2022;23(6):5806–5822.
  • Alom MZ, Yakopcic C, Hasan M, et al. Recurrent residual U-Net for medical image segmentation. J Med Imaging. 2019;6(1):1.
  • Kanungo T, Mount DM, Netanyahu NS, et al. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell. 2002;24(7):881–892.
  • Ugarriza LG, Saber E, Vantaram SR, et al. Automatic image segmentation by dynamic region growth and multiresolution merging. IEEE Trans Image Process. 2009;18(10):2275–2288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.