253
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Sparse-View Cone-Beam CT Reconstruction by Bar-by-Bar Neural FDK Algorithm

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 310-332 | Received 15 Nov 2022, Accepted 22 Mar 2023, Published online: 31 Mar 2023

References

  • Venkatesh E, Elluru S. Cone beam computed tomography: basics and applications in dentistry. J Istanb Univ Fac Dent. 2017;51(0):51.
  • Patcas R, Markic G, Müller L, et al. Accuracy of linear intraoral measurements using cone beam CT and multidetector CT: a tale of two CTs. Dentomaxillofac Radiol. 2012;41(8):637–644. DOI:10.1259/dmfr/21152480
  • Chiffre L, Carmignato S, Kruth JP, et al. Industrial applications of computed tomography. CIRP Annals Manuf Technol. 2014;63(2):655–677. DOI:10.1016/j.cirp.2014.05.011
  • Hseih J. Computed tomography - Principles, Design, Artifacts and Recent Advances. SPIE and John Wiley and Sons, Inc; 2009.
  • Kingston A, Yang Q, Grewar M, et al. Techniques for high-fidelity x-ray micro-tomography of additively manufactured metal components. Case Stud NondestrTest Eval. 2020;35(3):1–11. DOI:10.1080/10589759.2020.1778684
  • Jeon S, Kim S, Lee CO. Shape prior metal artefact reduction algorithm for industrial 3D cone beam CT. Case Stud NondestrTest Eval. 2020;36(2):176–194.
  • Feldkamp L, Davis LC, Kress J. Practical cone-beam algorithm. J Opt Soc Am A. 1984;1(6):612–619. 01. 10.1364/JOSAA.1.000612.
  • Schulze R, Heil U, Groß D, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40(5):265–273. DOI:10.1259/dmfr/30642039
  • Kim D, Park SJ, Jo B, et al. Investigation of sparse-angle view in cone beam computed tomography (CBCT) reconstruction algorithm using a sinogram interpolation method. World Congress on Med Phys Biomed Eng. 2015;06:51.
  • Kalke M, Siltanen S. Sinogram interpolation method for sparse-angle tomography. Appl Math. 2014;05(01):423–441.
  • Zhang H, Sonke JJ. Directional sinogram interpolation for sparse angular acquisition in cone-beam computed tomography. J Xray Sci Technol. 2013;21(4):481–496.
  • Jiang M, Wang G. Convergence of the simultaneous algebraic reconstruction technique (sart). IEEE Trans Image Process. 2003;12(8):957–961.
  • Yu H, Wang G. A soft-threshold filtering approach for reconstruction from a limited number of projections. Phys Med Biol. 2010;55(13):3905–3916.
  • Zang G, Aly M, Idoughi R, et al. Super-resolution and sparse view CT reconstruction. Computer Vision – ECCV. 2018;2018(09):145–161.
  • Maass N, Dennerlein F, Noo F, et al. Comparing ct reconstruction algorithms regarding cone–beam artifact performance. IEEE Nuclear Science Symposium Conference Record; Knoxville, Tennessee, USA. 2010 10;.
  • Park J, Song B, Kim J, et al. Fast compressed sensing-based CBCT reconstruction using barzilai-Borwein formulation for application to on-line IGRT. Med Phys. 2012;39(3):1207–1217. DOI:10.1118/1.3679865
  • Thibault JB, Sauer K, Bouman C, et al. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys. 2007;34(11):4526–4544. DOI:10.1118/1.2789499
  • Yu Z, Thibault JB, Bouman C, et al. Fast model-based X-ray CT reconstruction using spatially nonhomogeneous ICD optimization. IEEE Trans Image Process. 2011;20(1):161–175. DOI:10.1109/TIP.2010.2058811
  • Beister M, Kolditz D, Kalender W. Iterative reconstruction methods in X-ray CT. Phys Med. 2012;28(2):94–108.
  • Wang J, Li T, Xing L. Iterative image reconstruction for CBCT using edge-preserving prior. Med Phys. 2009;36(1):252–260.
  • Zhu B, Liu JZ, Rosen B, et al. Image reconstruction by domain transform manifold learning. Nature. 2018;555(7697):487–492. DOI:10.1038/nature25988
  • Ye DH, Buzzard GT, Ruby M, et al. Deep back projection for sparse-view ct reconstruction. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP); Anaheim, California, USA. nov. IEEE; 2018. p. 1–5.
  • Wang W, Xia XG, He C, et al. An end-to-end deep network for reconstructing CT images directly from sparse sinograms. IEEE Trans Comput Imaging. 2020;6(01):1548–1560. DOI:10.1109/TCI.2020.3039385
  • Mustafa W, Kehl C, Olsen U, et al. Sparse-view spectral CT reconstruction using deep learning. arXiv Preprint: arXiv: 201114842. 2020;11.
  • Ghani MU, Karl W. CNN based sinogram denoising for low-dose CT. Imaging and Appl Opt. 2018;01:MM2D.5.
  • Zhang Z, Liang X, Dong X, et al. A sparse-View CT reconstruction method based on combination of densenet and deconvolution. IEEE Trans Med Imaging. 2018;37(6):1. DOI:10.1109/TMI.2018.2823338
  • Shen L, Zhao W, Xing L. Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nat Biomed Eng. 2019;3(11):880–888.
  • Zheng A, Gao H, l Z, et al. A dual-domain deep learning-based reconstruction method for fully 3D sparse data helical CT. Phys in Med & Biol. 2020;65(24):245030. DOI:10.1088/1361-6560/ab8fc1
  • He J, Wang Y, Ma J. Radon inversion via deep learning. IEEE Trans Med Imaging. 2020;01:1.
  • Pelt D, Batenburg K. Fast tomographic reconstruction from limited data using artificial neural networks. IEEE Trans Image Process. 2013;22(12):5238–5251.
  • Lagerwerf R, Pelt D, Palenstijn W, et al. A computationally efficient reconstruction algorithm for circular cone-beam computed tomography using shallow neural networks. J Imaging. 2020;6(12):135. DOI:10.3390/jimaging6120135
  • Buratti A, Achour S, Isenberg C, et al. Frequency-based method to optimize the number of projections for industrial computed tomography. In: Proccdings of the Conference on Industrial Computed Tomography (iCT) Wels, Austria; 2016. 02
  • Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv Preprint arXiv: 14126980. 2014.
  • Dorgham O, Fisher M, Laycock S. Performance of 2D-3D image registration using (lossy) compressed X-ray CT. Annals of the BMVA. 2009;01(3).
  • Bellon C, Jaenisch GR aRTist–analytical RT inspection simulation tool; 2007.
  • Chollet F, et al. Keras [https://github.com/fchollet/keras]. 2015.
  • Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale machine learning on heterogeneous systems; 2015. Available from: https://www.tensorflow.org/.
  • Sidky E, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol. 2008;53(17):4777–4807.
  • Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graphics. 1987;21(4):347–353.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.