152
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Acoustic emission monitoring and analyses for avalanche release and slab fracturing events observed in Great Himalaya

, , , &
Pages 446-473 | Received 08 Jan 2023, Accepted 26 Apr 2023, Published online: 02 May 2023

References

  • Sornette D. Predictability of catastrophic events: material rupture, earthquakes, turbulence, financial crashes, and human birth. Proc National Acad Sci. 2002;99(suppl_1):2522–2529.
  • McClung DM. The elements of applied forecasting—part II: the physical issues and the rules of applied avalanche forecasting. Nat Hazards. 2002;26(2):131–146.
  • Schweizer J, Reuter B, Van Herwijnen A, et al. Temporal evolution of crack propagation propensity in snow in relation to slab and weak layer properties. Cryosphere. 2016;10(6):2637–2653.
  • Bowles D, St Lawrence WF. Acoustic emissions in the investigation of avalanches. Proceedings of the Western Snow Conference, 45th Annual meeting; Albuquerque, New Mexico. 1977. p. 88–94.
  • St Lawrence WF. The acoustic emission response of snow. J Glaciol. 1980;26(94):209–216.
  • Sommerfeld RA. A review of snow acoustics. Rev Geophys. 1982;20(1):62–66.
  • Schweizer J. Review of dry snow slab avalanche release. Cold Reg Sci Technol. 1999;30(1–3):43–57.
  • Schweizer J, Jamieson JB, Schneebeli M. Snow avalanche formation. Rev Geophys. 2003;41(4):1016.
  • McClung DM. Analysis of critical length measurements for dry snow slab weak-layer shear fracture. J Glaciol. 2011;57(203):557–566.
  • Gaume J, van Herwijnen A, Chambon G, et al. Snow fracture in relation to slab avalanche release: critical state for the onset of crack propagation. Cryosphere. 2017;11(1):217–228.
  • Bazant ZP, Zi G, McClung DM. Size effect law and fracture mechanics of the triggering of dry snow slab avalanches. J Geophys Res Solid Earth. 2003;108(B2):11–13. 2119. doi: 10.1029/2002JB001884
  • Gaume J, Gast T, Teran J, et al. Dynamic anticrack propagation in snow. Nat Commun. 2018;9(1):1–10.
  • Schweizer J, Van Herwijnen A . Can near real-time avalanche occurrence data improve avalanche forecasting? Int Snow Science Workshop; Grenoble – Chamonix Mont-Blanc - France. 2013. p. 195–198.
  • Conlan M, Jamieson B. Naturally triggered persistent deep slab avalanches in western Canada part I: avalanche characteristics and weather trends from weather stations. J Glaciol. 2016;62(232):1–13.
  • Lackinger B Stability and fracture of the snowpack for glide avalanches, avalanche formation, movement and effects. Proceedings of Davos Symposium. 1987; Proceedings of Davos Symposium. no. 162:229–241.
  • McClung DM, Schaerer P. The avalanche handbook, The mountaineers books. Seattle WA, USA; 1993.
  • Reuter B, Schweizer J, van Herwijnen A. A process-based approach to estimate point snow instability. Cryosphere. 2015;9(3):837–847.
  • Schweizer J, Reuter B, van Herwijnen A, et al. Avalanche release 101. In: Greene E (editor), Proceedings ISSW 2016. International Snow Science Workshop, Breckenridge CO, U.S.A., 3-7 October 2016. 2016:1–11.
  • Reuter B, Schweizer J. Describing snow instability by failure initiation, crack propagation, and slab tensile support. Geophys Res Lett. 2018;45(14):7019–7027.
  • Techel F, Müller K, Schweizer J. On the importance of snowpack stability, the frequency distribution of snowpack stability and avalanche size in assessing the avalanche danger level. Cryosphere. 2020;14(10):3503–3521.
  • Baggi S, Schweizer J. Characteristics of wet-snow avalanche activity: 20 years of observations from a high alpine valley (Dischma, Switzerland). Nat Hazards. 2009;50(1):97–108.
  • Dreier L, Harvey S, van Herwijnen A, et al. Relating meteorological parameters to glide-snow avalanche activity. Cold Reg Sci Technol. 2016;128:57–68.
  • Dkengne Sielenou P, Viallon-Galinier L, Hagenmuller P, et al. Combining random forests and class-balancing to discriminate between three classes of avalanche activity in the French Alps. Cold Reg Sci Technol. 2021;187:103276.
  • Pérez-Guillén C, Techel F, Hendrick M, et al. Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland. Nat Hazards Earth Syst Sci. 2022;22(6):2031–2056.
  • Zhu Y, Ishikawa T, Yamada TJ, et al. Probability assessment of slope instability in seasonally cold regions under climate change. J Infrastruct Preserv Resilience. 2021;2(1):20.
  • Cicoira A, Blatny L, Li X, et al. Towards a predictive multi-phase model for alpine mass movements and process cascades. Engg Geology. 2022;310:106866.
  • Blatny L, L¨owe H, Wang S, et al. Computational micromechanics of porous brittle solids. Comput Geotech. 2021;140:104284.
  • Trottet B, Simenhois R, Bobillier G, et al. Transition from sub-Rayleigh anticrack to supershear crack propagation in snow avalanches. Nat Phys. 2022;18(9):1094–1098.
  • Gubler H. Acoustic Emission as an indicator of stability decrease in fracture zones of avalanches. J Glaciol. 1979;22(86):186–188.
  • Sommerfeld RA, Gubler H. Snow avalanches and acoustic emissions. Ann Glaciol. 1983;4:271–276.
  • van Herwijnen A, Schweizer J. Seismic sensor array for monitoring an avalanche start zone: design, development and preliminary results. J Glaciol. 2011;57(202):267–276.
  • Wuriti GS, Chattopadhyaya S, Thomas T. Acoustic emission signal characteristics of maraging steel 250 pressure vessel during a hydraulic qualification test. Case Stud NondestrTest Eval. 2022;37(1):100–114.
  • Lawrence WF, Lang TE, Brown RL, et al. Acoustic Emissions in snow at constant rates of deformation. J Glaciol. 1973;12(64):144–146.
  • Lawrence WF, Bradely CC. Spontaneous fracture initiation in mountain snow-pack. J Glaciol. 1977;19(81):411–417.
  • Maillet E, Baker C, Morscher GN, et al. Feasibility and limitations of damage identification in composite materials using acoustic emission. Composites Part A. 2015;75:77–83.
  • Deschanel S, Rouma WB, Weiss J. Acoustic emission multiplets as early warnings of fatigue failure in metallic materials. Sci Rep. 2017;7(1):1–10.
  • Bhuiyan MY, Bao J, Poddar B, et al. Toward identifying crack-length-related resonances in acoustic emission waveforms for structural health monitoring applications. Struct Health Monit. 2017;1–9. DOI:10.1177/1475921717707356
  • Capelli A, Reiweger I, Schweizer J. Modeling snow failure behavior and concurrent acoustic emissions signatures with a fiber bundle model. Geophys Res Lett. 2019;46(12):6653–6662.
  • Capelli A, Reiweger I, Lehmann P, et al. Fiber-bundle model with time-dependent healing mechanisms to simulate progressive failure of snow. Phys Rev E. 2018a;98(2). DOI:10.1103/PhysRevE.98.023002
  • Datt P, Kapil JC, Kumar A. Acoustic emission characteristics and b-value estimate in relation to waveform analysis for damage response of snow. Cold Reg Sci Technol. 2015;119:170–182.
  • Kapil JC, Datt P, Kumar A, et al. Multi-sensor couplers and waveguides for efficient detection of acoustic emission behavior of snow. Cold Reg Sci Technol. 2014;101:1–13.
  • Reiweger I, Mayer K, Steiner K, et al. Measuring and localizing acoustic emission events in snow prior to fracture. Cold Reg Sci Technol. 2015;110:160–169.
  • Faillettaz J, Or D, Reiweger I. Codetection of acoustic emissions during failure of heterogeneous media: new perspectives for natural hazard early warning. Geophys Res Lett. 2016;43(3):1075–1083.
  • Capelli A, Reiweger I, Schweizer J. Acoustic emission signatures prior to snow failure. J Glaciol. 2018b May;64(246):543–554.
  • Michlmayr G, Cohen D, Or D. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media — a review. Earth-Sci Rev. 2012;112(3–4):97–114.
  • Capelli A, Reiweger I, Schweizer J. Studying snow failure with fiber bundle models. Front Physics-Lausanne. 2020;8:236.
  • Amorese D, Grasso JR, Rydelek PA. On varying b-values with depth: results from computer-intensive tests for Southern California. Geophys J Int. 2009;180(1):1–14.
  • Amitrano D, Arattano M, Chiarle M, et al. Micro seismic activity analysis for the study of the rupture mechanisms in unstable rock masses. Nat Hazards Earth Syst Sci. 2010;10(4):831–841.
  • Amitrano D, Guber S, Girard L. Evidence of frost-cracking inferred from acoustic emissions in a high-alpine rock-wall. Earth Planet Sci Lett. 2012;341-344:341–344.
  • Sharma S, Kapil JC, Shahi JS, et al. Crack growth under three-point beam bending and fracture energy estimation for snow in relation to acoustic emission responses. Theor Appl Fract Mech. 2020;109:102683.
  • Rosendahl PL, Weißgraeber P. Modeling snow slab avalanches caused by weak-layer failure – Part 1: slabs on compliant and collapsible weak layers. Cryosphere. 2020;14(1):115–130.
  • Dixon N, Smith A, Flint JA, et al. An acoustic emission landslide early warning system for communities in low-income and middle-income Countries. Landslides. 2018 March;15(8):1–14.
  • Reiweger I, Schweizer J Measuring acoustic emissions in an avalanche starting zone to monitor snow stability. Proceedings ISSW 2013 Grenoble - Chamonix Mont Blanc, ANENA. 2013; 942–944.
  • Birkeland KW, van Herwijnen A, Reuter B, et al. Temporal changes in the mechanical properties of snow related to crack propagation after loading. Cold Reg Sci Technol. 2019;159:142–152.
  • Jamieson JB, Johnston CD. A fracture-arrest model for unconfined dry slab avalanches. Can Geotech J. 1992;29(1):61–66.
  • Smith A, Dixon N Acoustic emission monitoring of active waveguides to quantify slope stability. Proceedings of the 13th BGA Young Geotechnical Engineers’ Symposium, Manchester, 30 June to 2 July. 2014; 17–18. (https://dspace.lboro.ac.uk/2134/16089)
  • Jurich DM, Miller RJ. Acoustic monitoring of landslides. Transport Res Rec. 1987;30–38.
  • Mistras Group Inc, DiSP with AEwin, User’s Manual, AE win software version 3.70 or higher, Rev 4. 2011; July: PAC Part No. 6320-1001. http://www.mistrasgroup.com
  • Ma T, Lin D, Tang C, et al. Microseismic monitoring, positioning principle, and sensor layout strategy of rock mass engineering. Geofluids. 2020;2020:20.
  • Utsu T. A method for determining the value of b in a formula log n = a – bM showing the magnitude-frequency relation for earthquakes. Geophys Bull Hokkaido Univ. 1965;13:99–103. Hokkaido, Japan.
  • Tinti S, Mulargia F. Confidence Intervals of b value for grouped magnitudes. Bulletin of the Seismological Society of America. 1987;77(6):2125–2134.
  • Fierz C, Armstrong RL, Durand Y, et al. The International Classification for Seasonal Snow on the Ground IHP-VII Technical Documents in Hydrology No. 83, IACS Contribution No. 1, UNESCO-IHP, Paris, 2009.
  • Szabo D, Schneebeli M Subsecound sintering of ice. Applied Physics Letters. 2007; 90:151916. 15 10.1063/1.2721391
  • Peinke I, Hagenmuller P, Chambon G, et al. Investigation of snow sintering at microstructural scale from micropenetration tests. Cold Reg Sci Technol. 2019;162:43–55.
  • Podolskiy EA, Barbero M, Barpi F, et al. Healing of snow surface-to-surface contacts by isothermal sintering. Cryosphere. 2014;8(5):1651–1659.
  • Birkeland K, Kronholm K, Logan S, et al. Field measurements of sintering after fracture of snowpack weak layers. Geophys Res Lett. 2006;33(3):1–4.
  • Colbeck SC. A review of sintering in seasonal snow. In: CRREL Report, US Army Corps of Engineers. Cold Regions Research Engineering Laboratory, Technical Report; 1997. pp. 10–97.
  • Zaki A, Chai HK, Razak HA. Shiotani T.Monitoring and evaluating the stability of soil slopes: a review on various available methods and feasibility of acoustic emission technique.Comptes rendus geoscience. Comptes Rendus Geosci. 2014;346(9–10):223–232.
  • Dixon N, Spriggs M. Quantification of slope displacement rates using acoustic emission monitoring. Canada Geotechn J. 2007;44(8):966–976.
  • Fan JW, Tang LZ. Application of acoustic emission rate and energy rate in rock failure. Metal Mine. 2010;409:7, 140–142.
  • Sun B, Hou S, Xie J, et al. Failure prediction of two types of rocks based on acoustic emission characteristics. Adv Civil Eng. 2019;2019:11.
  • Reiweger I, Schweizer J, Dual J, et al. Modelling snow failure with a fibre bundle model. J Glaciol. 2009;55(194):997–1002.
  • Zhang JZ, Zhou XP. AE event rate characteristics of flawed granite: from damage stress to ultimate failure. Geophy J Int. 2020;222(2):795–814.
  • Vu CC, Amitrano D, Plé O, et al. Compressive failure as a critical transition: experimental evidence and mapping onto the universality class of depinning. Phys Rev Lett. 2019;122(1):015502.
  • Faillettaz J, Funk M, Vincent C. Avalanching glacier instabilities: review on processes and early warning perspectives. Rev Geophys. 2015;53(2):203–224.
  • Vidya Sagar R, Dutta M. Combined usage of acoustic emission technique and ultrasonic pulse velocity test to study crack classification in reinforced concrete structures. Case Stud NondestrTest Eval. 2021;36(1):62–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.