147
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Laser-generated surface waves for quantitative detection of inclined surface cracks based on finite element analysis

ORCID Icon, , , , , & show all
Pages 687-700 | Received 14 Oct 2022, Accepted 06 Jun 2023, Published online: 15 Jun 2023

References

  • Zhang Z, Zhao J, Pan Y. Surface circular-arc defects interacted by laser-generated Rayleigh wave. Ultrasonics. 2020;103:106085. doi: 10.1016/j.ultras.2020.106085
  • Edwards C, Palmer SB. The magnetic leakage field of surface-breaking cracks. J Phys D Appl Phys. 1986;19(4):657–673. doi: 10.1088/0022-3727/19/4/018.
  • Basheer CM, Krishnamurthy CV, Balasubramaniam K. Hot-rod thermography for defect detection. Insight. 2017;59(9):484–490. doi: 10.1784/insi.2017.59.9.484.
  • Gaul L, Sprenger H, Schaal C, et al. Structural health monitoring of cylindrical structures using guided ultrasonic waves. Acta Mech. 2012;223(8):1669–1680. doi: 10.1007/s00707-012-0634-z
  • Delenkovsky NV, Gnusin AB. Estimating the depth of surface flaws by penetrant testing. Russ J Nondestr Test. 2017;53(3):231–235. doi: 10.1134/S1061830917030044.
  • Laansoo A, Kübarsepp J, Surženkov A, et al. Induction brazing of cermets to steel and eddy current testing of joint quality. Weld World. 2020;64(3):563–571. doi: 10.1007/s40194-020-00854-x
  • Aleshin NP, Grigor’ev MV, Murashov VV, et al. Assessing the results of ultrasonic testing of additive manufactured parts with alternative methods. Russ J Nondestr Test. 2016;52(12):691–696. doi: 10.1134/S1061830916120032
  • Harumi K, Uchida M, Miyajima T, et al. New technique of defect sizing of a small inclined crack on a free surface using multi-tip-waves. Nondestr Test Eval. 1992;8(1–6):431–441. doi: 10.1080/10589759208952721
  • Chen Z, Li C, Xu G, et al. Quantifying fatigue cracks in TC4 titanium alloy using a nonlinear modulation ultrasonic testing method. J Mech Mater Struct. 2021;16(4):419–428. doi: 10.2140/jomms.2021.16.419
  • Feng L, Qian X. Enhanced sizing for surface cracks in welded tubular joints using ultrasonic phased array and image processing. NDT E Int. 2020;116:102334. doi: 10.1016/j.ndteint.2020.102334
  • Karabutov AA, Podymova NB. Nondestructive porosity assessment of CFRP composites with spectral analysis of back scattered laser-induced ultrasonic pulses. J Nondestruct Eval. 2013;32(3):315–324. doi: 10.1007/s10921-013-0184-x.
  • Karabutov AA, Podymova NB. Quantitative analysis of the influence of voids and delaminations on acoustic attenuation in CFRP composites by the laser-ultrasonic spectroscopy method. Compos B Eng. 2014;56:238–244. doi: 10.1016/j.compositesb.2013.08.040
  • Tao C, Yin A, Ying Z, et al. Numerical study on the mechanism of laser-generated Rayleigh waves’ interaction with a surface notch at high temperature. Jpn J Appl Phys. 2019;58(4):046504. doi: 10.7567/1347-4065/ab0885
  • Copper JA, Crosbie RA, Dewhurst RJ, et al. Surface acoustic wave interactions with cracks and slots: a noncontacting study using lasers. IEEE Trans Ultrason Ferroelect Freq Contr. 1986;33(5):462–470. doi: 10.1109/T-UFFC.1986.26857
  • Jian X, Fan Y, Edwards RS, et al. Surface-breaking crack gauging with the use of laser-generated Rayleigh waves. Appl Phys. 2006;100(6):064907. doi: 10.1063/1.2353892
  • Wang C, Sun A, Xue M, et al. Width gauging of surface slot using laser-generated Rayleigh waves. Opt Laser Technol. 2017;92:15–18. doi: 10.1016/j.optlastec.2016.12.033
  • Li H, Pan Q, Zhang X, et al. An approach to size sub-wavelength surface crack measurements using Rayleigh waves based on laser ultrasounds. Sensors. 2020;20(18):5077–5077. doi: 10.3390/s20185077
  • Matsuda Y, Nakano H, Nagai S, et al. Surface breaking crack evaluation with photorefractive quantum wells and laser-generated Rayleigh waves. Appl Phys Lett. 2006;89(17):171902. doi: 10.1063/1.2364579
  • Dai Y, Xu B, Luo Y, et al. Finite element modeling of the interaction of laser-generated ultrasound with a surface-breaking notch in an elastic plate. Opt Laser Technol. 2009;42(4):693–697. doi: 10.1016/j.optlastec.2009.11.012
  • Ni C, Shi Y, Shen Z, et al. An analysis of angled surface-breaking crack detection by dual-laser source generated ultrasound. NDT E Int. 2010;43(6):470–475. doi: 10.1016/j.ndteint.2010.05.001
  • Zeng W, Qi S, Liu L, et al. Research on laser-generated Rayleigh waves with angled surface crack by finite element method. Optik. 2019;181:57–62. doi: 10.1016/j.ijleo.2018.11.105
  • Achenbach JD, Lin W, Keer LM. Surface waves due to scattering by a near-surface parallel crack. IEEE Trans Son Ultrason. 1983;30(4):270–275. doi: 10.1109/T-SU.1983.31418.
  • Achenbach JD. The thermoelasticity of laser-based ultrasonics. J Therm Stresses. 2005;28(6–7):713–727. doi: 10.1080/01495730590929368.
  • Arias I, Achenbach JD. A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique. Wave Motion. 2004;39(1):61–75. doi: 10.1016/j.wavemoti.2003.06.001.
  • Guan J. Numerical study on depth gauging of surface breaking defects using laser-generated surface acoustic wave. Jpn J Appl Phys. 2011;50(3R):032703. doi: 10.1143/JJAP.50.032703.
  • Shi Y, Shen Z, Ni X, et al. Finite element modeling of acoustic field induced by laser line source near surface defect. Opt Express. 2007;15(9):5512–5520. doi: 10.1364/OE.15.005512
  • Jiang Y, Gao H, Zhang Q, et al. Evaluation of fatigue cracks on rail material based on laser nonlinear wave modulation and adaptive particle swarm optimization-support vector machines. Nondestr Test Eval. 2022;2159961. doi: 10.1080/10589759.2022.2159961
  • Takahashi K, Pavlovic M, Bertovic M, et al. Application of POD to complex industrial problems: new approaches. AIP Conf Proc. 2009;1096(1):1824.
  • Mueller I, Memmolo V, Tschöke K, et al. Performance assessment for a guided wave-based shm system applied to a stiffened composite structure. Sensors. 2022;22(19):7529–7529. doi: 10.3390/s22197529
  • Dixon S, Cann B, Carroll DL, et al. Non-linear enhancement of laser generated ultrasonic Rayleigh waves by cracks. Nondestr Test Eval. 2008;23(1):25–34. doi: 10.1080/10589750701550640

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.