95
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Real-time intelligent fault diagnosis of rotating machines based on Archimedes algorithm optimised Gradient Boosting

Pages 474-512 | Received 24 May 2023, Accepted 11 Sep 2023, Published online: 08 Dec 2023

References

  • Nishat Toma R, Kim JM. Bearing fault classification of induction motors using discrete wavelet transform and ensemble machine learning algorithms. Appl Sci. 2020;10(15):5251. doi: 10.3390/app10155251
  • Jalayer M, Orsenigo C, Vercellis C. Fault detection and diagnosis for rotating machinery: a model based on convolutional lstm, fast Fourier and continuous wavelet transforms. Comput Ind. 2021;125:103378. doi: 10.1016/j.compind.2020.103378
  • Jia J, Zhang C, Chen J, et al. Fault diagnosis analysis of angle grinder based on acd-de and svm hybrid algorithm. Mathematics. 2022;10(18):3279. doi: 10.3390/math10183279
  • Panigrahy PS, Santra D, Chattopadhyay P. Decent fault classification of vfd fed induction motor using random forest algorithm. Artif Intell Eng Des Anal Manufact. 2020;34(4):492–504. doi: 10.1017/S0890060420000311
  • Hu L, Wang L, Chen Y, et al. Bearing fault diagnosis using piecewise aggregate approximation and complete ensemble empirical mode decomposition with adaptive noise. Sensors. 2022;22(17):6599. doi: 10.3390/s22176599
  • Wang P, Zhou Y, Zhang L. Fault diagnosis method of rotating machinery based on ceemdan-lstm model. J Phys Conf Ser. 2022;2173(1):012057. doi: 10.1088/1742-6596/2173/1/012057
  • Syed SH, Muralidharan V. Feature extraction using discrete wavelet transform for fault classification of planetary gearbox – a comparative study. Appl Acoust. 2022;188:108572. doi: 10.1016/j.apacoust.2021.108572
  • Lu S, Gao W, Hong C, et al. A newly-designed fault diagnostic method for transformers via improved empirical wavelet transform and kernel extreme learning machine. Advan Eng Inform. 2021;49:101320. doi: 10.1016/j.aei.2021.101320
  • Malhotra A, Singh Minhas A, Singh S, et al. Bearing fault diagnosis based on flexible analytical wavelet transform and fuzzy entropy approach. Mater Today Proc. 2021;43:629–635. doi: 10.1016/j.matpr.2020.12.160
  • Yaman O, Yol F, Altinors A. A fault detection method based on embedded feature extraction and svm classification for UAV motors. Microprocess Microsyst. 2022;94:104683. doi: 10.1016/j.micpro.2022.104683
  • Manjunatha G, Chittappa HC. Bearing fault classification using empirical mode decomposition and machine learning approach. J Mines Met Fuels. 2022;70(4):214. doi: 10.18311/jmmf/2022/30060
  • Liang P, Deng C, Wu J, et al. Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network. Measurement. 2020;159:107768. doi: 10.1016/j.measurement.2020.107768
  • Hasan MJ, Sohaib M, Kim JM. A multitask-aided transfer learning-based diagnostic framework for bearings under inconsistent working conditions. Sensors. 2020;20(24):7205. doi: 10.3390/s20247205
  • Wang M, Chen Y, Zhang X, et al. Roller bearing fault diagnosis based on integrated fault feature and svm. J Vib Eng Technol. 2022;10(3):853–862. doi: 10.1007/s42417-021-00414-7
  • Chen W, Li J, Wang Q, et al. Fault feature extraction and diagnosis of rolling bearings based on wavelet thresholding denoising with ceemdan energy entropy and pso-lssvm. Measurement. 2021;172:108901. doi: 10.1016/j.measurement.2020.108901
  • Sun S, Lu R. Fault diagnosis of gearbox based on ant colony algorithm optimized support vector machine. J Phys Conf Ser. 2021;2137(1):012068. doi: 10.1088/1742-6596/2137/1/012068
  • Li W, Cao Y, Li L, et al. An orthogonal wavelet transform-based k-nearest neighbor algorithm to detect faults in bearings. Shock Vib. 2022;2022:1–13. doi: 10.1155/2022/5242106
  • Zhong C, Wang JS, Sun WZ. Fault diagnosis method of rotating bearing based on improved ensemble empirical mode decomposition and deep belief network. Meas SciTechnol. 2022;33(8):085109. doi: 10.1088/1361-6501/ac6cc9
  • Lu N, Zhuang G, Ma Z, et al. A zero-shot intelligent fault diagnosis system based on eemd. IEEE Access. 2022;10:54197–54207. doi: 10.1109/ACCESS.2022.3175873
  • Lu N, Li M, Zhang G, et al. Fault feature extraction method for rotating machinery based on a ceemdan-lpp algorithm and synthetic maximum index. Measurement. 2022;189:110636. doi: 10.1016/j.measurement.2021.110636
  • Shi J, Liang M, Necsulescu DS, et al. Generalized stepwise demodulation transform and synchrosqueezing for time–frequency analysis and bearing fault diagnosis. J Sound Vibr. 2016;368:202–222. doi: 10.1016/j.jsv.2016.01.015
  • You G, Lv Y, Jiang Y, et al. A novel fault diagnosis scheme for rolling bearing based on convex optimization in synchroextracting chirplet transform. Sensors. 2020;20(10):2813. doi: 10.3390/s20102813
  • Tang S, Zhu Y, Yuan S. Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform. Reliab Eng Syst Saf. 2022;224:108560. doi: 10.1016/j.ress.2022.108560
  • Lv Y, Lv S, Yuan R, et al. Longitudinal synchroextracting transform: a useful tool for characterizing signals with strong frequency modulation and application to machine fault diagnosis. Measurement. 2021;182:109750. doi: 10.1016/j.measurement.2021.109750
  • Guo J, Wang X, Zhai C, et al. Fault diagnosis of wind turbine bearing using synchrosqueezing wavelet transform and order analysis. Proceedings of the 14th IEEE Conference on Industrial Electronics and Applications (ICIEA); Xi'an, China; 2019.
  • Hua Z, Shi J, Jiang X, et al. Matching and reassignment based time-frequency enhancement for rotating machinery fault diagnosis under nonstationary speed operations. Meas SciTechnol. 2021;32(8):084002. doi: 10.1088/1361-6501/abfa3e
  • Hua Z, Shi J, Luo Y, et al. Iterative matching synchrosqueezing transform and application to rotating machinery fault diagnosis under nonstationary conditions. Measurement. 2021;173:108592. doi: 10.1016/j.measurement.2020.108592
  • Liu H, Xiang J Multivariate wavelet denoising method based on synchrosqueezing for rolling element bearing fault diagnosis. Proceedings of the International Conference on Sensing,Diagnostics, Prognostics, and Control (SDPC); Xi'an, China; 2018.
  • Suryawanshi GL, Patil SK, Desavale RG. Empirical-based DA and Ann to diagnose misalignment in rotor-bearing system. Case Stud NondestrTest Eval. 2023;1–26. doi: 10.1080/10589759.2023.2228979
  • You X, Li J, Deng Z, et al. Fault diagnosis of rotating machinery based on two-stage compressed sensing. Machines. 2023;11(2):242. doi: 10.3390/machines11020242
  • Ma C, Li Y, Wang X, et al. Early fault diagnosis of rotating machinery based on composite zoom permutation entropy. Reliab Eng Syst Saf. 2023;230:108967. doi: 10.1016/j.ress.2022.108967
  • Inturi V, S GR, Penumakala PK. Bearing fault severity analysis on a multi-stage gearbox subjected to fluctuating speeds. Exp Tech. 2020;44(5):541–552. doi: 10.1007/s40799-020-00370-z
  • Medina R, Macancela JC, Lucero P, et al. Gear and bearing fault classification under different load and speed by using poincaré plot features and svm. J Intell Manuf. 2020;33(4):1031–1055. doi: 10.1007/s10845-020-01712-9
  • Altaf M, Akram T, Khan MA, et al. A new statistical features based approach for bearing fault diagnosis using vibration signals. Sensors. 2022;22(5):2012. doi: 10.3390/s22052012
  • Baicoianu A, Mathe A Diagnose bearing failures with machine learning models. Proceedings of the 2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA); Kocaeli, Turkey; 2021.
  • Liu S, Ji Z, Wang Y, et al. Multi-feature fusion for fault diagnosis of rotating machinery based on convolutional neural network. Comput Commun. 2021;173:160–169. doi: 10.1016/j.comcom.2021.04.016
  • Chen Y, Zhang D, Zhu K, et al. An adaptive activation transfer learning approach for fault diagnosis. IEEE/ASME Trans. Mechatron. 2023;28(5):1–12. doi: 10.1109/TMECH.2023.3243533
  • Gu K, Zhang Y, Liu X, et al. Dwt-lstm-based fault diagnosis of rolling bearings with multi-sensors. Electronics. 2021;10(17):2076. doi: 10.3390/electronics10172076
  • Chuya-Sumba J, Alonso-Valerdi LM, Ibarra-Zarate DI. Deep-learning method based on 1d convolutional neural network for intelligent fault diagnosis of rotating machines. Appl Sci. 2022;12(4):2158. doi: 10.3390/app12042158
  • Varanis M, Pederiva R. Statements on wavelet packet energy–entropy signatures and filter influence in fault diagnosis of induction motor in non-stationary operations. J Braz Soc Mech Sci Eng. 2018;40(2). doi: 10.1007/s40430-018-1025-8
  • Gong, W., Chen, H., Zhang, Z., et al. A novel deep learning method for intelligent fault diagnosis of rotating machinery based on improved CNN-SVM and multichannel data fusion. Sensors. 2019;19(7):1693. doi: 10.3390/s19071693
  • Pang S, Yang X, Zhang X, et al. Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features. ISA Trans. 2020;98:320–337. doi: 10.1016/j.isatra.2019.08.053
  • Tayyab SM, Asghar E, Pennacchi P, et al. Intelligent fault diagnosis of rotating machine elements using machine learning through optimal features extraction and selection. Procedia Manuf. 2020;51:266–273. doi: 10.1016/j.promfg.2020.10.038
  • Sepulveda NE, Sinha J. Parameter optimisation in the vibration-based machine learning model for accurate and reliable faults diagnosis in rotating machines. Machines. 2020;8(4):66. doi: 10.3390/machines8040066
  • Jia N, Cheng Y, Liu Y, et al. Intelligent fault diagnosis of rotating machines based on wavelet time-frequency diagram and optimized stacked denoising auto-encoder. IEEE Sens J. 2022;22(17):17139–17150. doi: 10.1109/JSEN.2022.3193943
  • Cheng Y, Lin M, Wu J, et al. Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network. Knowledge-Based Syst. 2021;216:106796. doi: 10.1016/j.knosys.2021.106796
  • Lu J, Qian W, Li S, et al. Enhanced k-nearest neighbor for intelligent fault diagnosis of rotating machinery. Appl Sci. 2021;11(3):919. doi: 10.3390/app11030919
  • Shukla R, Kankar PK, Pachori RB. Automated bearing fault classification based on discrete wavelet transform method. Life Cycle Reliab Saf Eng. 2020;10(2):99–111. doi: 10.1007/s41872-020-00151-y
  • Yan W, Wang J, Lu S, et al. A review of real-time fault diagnosis methods for industrial smart manufacturing. Processes. 2023;11(2):369. doi: 10.3390/pr11020369
  • Tama BA, Vania M, Lee S, et al. Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals. Artif Intell Rev. 2022;56(5):4667–4709. doi: 10.1007/s10462-022-10293-3
  • Mushtaq S, Islam MM, Sohaib M. Deep learning aided data-driven fault diagnosis of rotatory machine: a comprehensive review. Energies. 2021;14(16):5150. doi: 10.3390/en14165150
  • Cen J, Yang Z, Liu X, et al. A review of data-driven machinery fault diagnosis using machine learning algorithms. J Vib Eng Technol. 2022;10(7):2481–2507. doi: 10.1007/s42417-022-00498-9
  • Tran H, Noori M, Altabey WA, et al. Fault diagnosis of rotating machinery using wavelet-based feature extraction and support vector machine classifier. High Speed Mach. 2017;3(1). doi: 10.1515/hsm-2017-0003
  • Yan J, Laflamme S, Singh P, et al. A comparison of time-frequency methods for real-time application to high-rate dynamic systems. Vibration. 2020;3(3):204–216. doi: 10.3390/vibration3030016
  • Addison PS The wavelet transform handbook. Inst. of Physics Publ.; 2002.
  • Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29(5). doi: 10.1214/aos/1013203451
  • Hashim FA, Hussain K, Houssein EH, et al. Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell. 2020;51(3):1531–1551. doi: 10.1007/s10489-020-01893-z
  • Malik H, Sharma R, Thampi SM, et al. EMD and Ann based intelligent fault diagnosis model for transmission line. J Int Fuzzy Syst. 2017;32(4):3043–3050. doi: 10.3233/JIFS-169247
  • Shah AK, Yadav A, Malik H, et al. EMD and Ann based intelligent model for bearing fault diagnosis. J Int Fuzzy Syst. 2018;35(5):5391–5402. doi: 10.3233/JIFS-169821
  • Daubechies I, Lu J, Wu HT. Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl Comput Harmon Anal. 2011;30(2):243–261. doi: 10.1016/j.acha.2010.08.002
  • Meignen S, Oberlin T, Pham DH. Synchrosqueezing transforms: from low- to high-frequency modulations and perspectives. C R Phys. 2019;20(5):449–460. doi: 10.1016/j.crhy.2019.07.001
  • Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. doi: 10.1023/A:1010933404324
  • Schapire RE. Explaining AdaBoost. In: Empirical Inference. Berlin, Germany: Springer Berlin, Heidelberg; 2013. p. 37–52. doi: 10.1007/978-3-642-41136-6_5
  • Prokhorenkova L, Gusev G, Vorobev A, et al. Catboost: unbiased boosting with categorical features. In: NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems; Montreal, Canada; 2018. p. 6639–6649.
  • Hegde C, Wallace S, Gray K. Using trees, bagging, and random forests to predict rate of penetration during drilling. Proceedings of the SPE Middle East Intelligent Oil and Gas Conference and Exhibition; Abu Dhabi, United Arab Emirates; 2015.
  • Guryanov A. Histogram-based algorithm for building gradient boosting ensembles of piecewise linear decision trees. Lect Notes Comput Sci. 2019;11832:39–50.
  • Witten IH, Frank E, Hall MA, et al. Data mining: practical machine learning tools and techniques. Burlington, Massachusetts, USA: Morgan Kaufmann; 2017.
  • Yang Y, Chen H, Heidari AA, et al. Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl. 2021;177:114864. doi: 10.1016/j.eswa.2021.114864
  • Al-Betar MA, Alyasseri ZA, Awadallah MA, et al. Coronavirus herd immunity optimizer (chio). Neural Comput Appl. 2020;33(10):5011–5042. doi: 10.1007/s00521-020-05296-6
  • Abualigah L, Yousri D, Abd Elaziz M, et al. Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng. 2021;157:107250. doi: 10.1016/j.cie.2021.107250
  • Abualigah L, Diabat A, Mirjalili S, et al. The arithmetic optimization algorithm. Comput Methods Appl Mech Eng. 2021;376:113609. doi: 10.1016/j.cma.2020.113609
  • Riberio FML Mafaulda-machinery fault database; 2017. Available from: http://www02.smt.ufrj.br/offshore/mfs/page_01.html#SEC1.
  • Marins MA, Ribeiro FM, Netto SL, et al. Improved similarity-based modeling for the classification of rotating-machine failures. J Franklin Inst. 2018;355(4):1913–1930. doi: 10.1016/j.jfranklin.2017.07.038
  • Das O, Bagci Das D. Smart machine fault diagnostics based on fault specified discrete wavelet transform. J Braz Soc Mech Sci Eng. 2023;45(1). doi: 10.1007/s40430-022-03975-0
  • Case Western Reserve University. Case western reserve university bearing dataset. [Cited: 2023 Jul 1]. Available from: https://csegroups.case.edu/bearingdatacenter/home.
  • Pothisarn C, Klomjit J, Ngaopitakkul A, et al. Comparison of various mother wavelets for fault classification in electrical systems. Appl Sci. 2020;10(4):1203. doi: 10.3390/app10041203
  • Li C, Liang M. Time–frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform. Mech Syst Signal Process. 2012;26:205–217. doi: 10.1016/j.ymssp.2011.07.001
  • Geitner FK, Bloch HP. Machinery Failure Analysis and Troubleshooting. 4th ed. Waltham, Massachusetts, USA: Butterworth-Heinemann. 2012;391–478. doi: 10.1016/B978-0-12-386045-3.00005-2
  • Lan Y, Li Z, Lin W. A time-domain signal processing algorithm for data-driven drive-by inspection methods: an experimental study. Materials. 2023;16(7):2624. doi: 10.3390/ma16072624
  • Tang C, Garreau D, von Luxburg U. When do random forests fail? Adv Neural Inf Process Syst. 2018;31.
  • Brodeur ZP, Herman JD, Steinschneider S. Bootstrap aggregation and cross-validation methods to reduce overfitting in reservoir control policy search. Water Resour Res. 2020;56(8). doi: 10.1029/2020WR027184

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.