65
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Electrospun PLLA/PEI nanofibers for controlled drug release behaviors and antibacterial efficiency

, , ORCID Icon &
Pages 186-202 | Received 29 Nov 2023, Accepted 17 Feb 2024, Published online: 29 Feb 2024

References

  • He, Y.; Yan, J.; He, X.; Weng, W.; Cheng, K. PLLA/Graphene Nanocomposites Membranes with Improved Biocompatibility and Mechanical Properties. Coatings 2022, 12, 718. DOI: 10.3390/coatings12060718.
  • Gupta, D.; Dogra, V.; Verma, D.; Chaudhary, A. K.; Tewari, M. Processing of PLA/PLLA-Based Composites for Medical Device Applications. Bioresorb. Polym. Their Compos. 2024, 1, 85.
  • Qu, X.; Sang, X.; Lv, Y.; Wang, C.; Hu, P.; Guo, Q.; Liu, Y. PLLA-COI Multilayer Nanofiber Membrane for anti-Adhesion of the Achilles Tendon. Mater. Today Commun. 2024, 38, 107595. DOI: 10.1016/j.mtcomm.2023.107595.
  • Eivazzadeh-Keihan, R.; Sadat, Z.; Lalebeigi, F.; Naderi, N.; Panahi, L.; Ganjali, F.; Mahdian, S.; Saadatidizaji, Z.; Mahdavi, M.; Chidar, E.; et al. Effects of Mechanical Properties of Carbon-Based Nanocomposites on Scaffolds for Tissue Engineering Applications: A Comprehensive Review. Nanoscale Adv. 2024, 6, 337–366. DOI: 10.1039/d3na00554b.
  • Shabanloo, R.; Akbari, S.; Mirsalehi, M. Hybrid Electrospun Scaffolds Based on Polylactic Acid/PAMAM Dendrimer/Gemini Surfactant for Enhancement of Synergistic Antibacterial Ability for Biomedical Application. Biomed. Mater. 2022, 17, 045009. DOI: 10.1088/1748-605X/ac6bd7.
  • Forouharshad, M.; Ajalloueian, F. Tunable Self‐Assembled Stereocomplexed‐Polylactic Acid Nanoparticles as a Drug Carrier. Polym. Adv. Techs. 2022, 33, 246–253. DOI: 10.1002/pat.5510.
  • Ghafouri, S. E.; Mousavi, S. R.; Khakestani, M.; Mozaffari, S.; Ajami, N.; Khonakdar, H. A. Electrospun Nanofibers of Poly (Lactic Acid)/Poly (ε‐Caprolactone) Blend for the Controlled Release of Levetiracetam. Polym. Eng. Sci. 2022, 62, 4070–4081. DOI: 10.1002/pen.26167.
  • Esmaeilzadeh, M.; Asadi, A.; Goudarzi, F.; Shahabi, F. Evaluation of Adhesion, Growth and Differentiation of Human Umbilical Cord Stem Cells to Osteoblast Cells on PLA Polymeric Scaffolds. Biomed. Mater. Devices 2023, 1, 772–788. DOI: 10.1007/s44174-023-00062-3.
  • Kang, S.; Hou, S.; Chen, X.; Yu, D.-G.; Wang, L.; Li, X.; R Williams, G. Energy-Saving Electrospinning with a Concentric Teflon-Core Rod Spinneret to Create Medicated Nanofibers. Polymers. (Basel) 2020, 12, 2421. DOI: 10.3390/polym12102421.
  • Litvinov, M.; Podshivalov, A.; Kovalev, K. Morphological Study of the Particle-to-Fiber Transition Threshold during Electrohydrodynamic Processing of Chitosan Solution. J. Macromol. Sci. Part A 2021, 58, 804–810. DOI: 10.1080/10601325.2021.1950012.
  • Huang, X.; Jiang, W.; Zhou, J.; Yu, D.-G.; Liu, H. The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation. Polymers. (Basel) 2022, 14, 4947. DOI: 10.3390/polym14224947.
  • Wang M-L, Yu D-G, Bligh SWA, editors. Side-by-Side Electrospun PCL-Ag NPs/CA-Lavender Oil Janus Nanobelt as a Potential Dressing. 2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP); 2023: IEEE. DOI: 10.1109/NAP59739.2023.10310821.
  • Yang, Y.; Chen, W.; Wang, M.; Shen, J.; Tang, Z.; Qin, Y.; Yu, D.-G. Engineered Shellac Beads-On-the-String Fibers Using Triaxial Electrospinning for Improved Colon-Targeted Drug Delivery. Polymers. (Basel) 2023, 15, 2237. DOI: 10.3390/polym15102237.
  • Wang, M.; Hou, J.; Yu, D.-G.; Li, S.; Zhu, J.; Chen, Z. Electrospun Tri-Layer Nanodepots for Sustained Release of Acyclovir. J. Alloys Compd. 2020, 846, 156471. DOI: 10.1016/j.jallcom.2020.156471.
  • Tabakoglu, S.; Kołbuk, D.; Sajkiewicz, P. Multifluid Electrospinning for Multi-Drug Delivery Systems: Pros and Cons, Challenges, and Future Directions. Biomater. Sci. 2023, 11, 37–61. DOI: 10.1039/d2bm01513g.
  • Hanuman, S.; Zimran, S.; Nune, M.; Thakur, G. Electrospinning for Biomedical Applications. 2023.
  • Chen, J.-P.; Su, C.-H. Surface Modification of Electrospun PLLA Nanofibers by Plasma Treatment and Cationized Gelatin Immobilization for Cartilage Tissue Engineering. Acta Biomater. 2011, 7, 234–243. DOI: 10.1016/j.actbio.2010.08.015.
  • Wang, S.; Cui, W.; Bei, J. Bulk and Surface Modifications of Polylactide. Anal. Bioanal. Chem. 2005, 381, 547–556. DOI: 10.1007/s00216-004-2771-2.
  • Kang, E. Y.; Choi, B.; Park, W.; Kim, I. H.; Han, D. K. One Step Bulk Modification of Poly (L-Lactic Acid) Composites with Functional Additives to Improve Mechanical and Biological Properties for Cardiovascular Implant Applications. Colloids Surf. B Biointerfaces 2019, 179, 161–169. DOI: 10.1016/j.colsurfb.2019.03.067.
  • Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly (Lactic Acid) Modifications. Prog. Polym. Sci. 2010, 35, 338–356. DOI: 10.1016/j.progpolymsci.2009.12.003.
  • Nikzamir, M.; Hanifehpour, Y.; Akbarzadeh, A.; Panahi, Y. Applications of Dendrimers in Nanomedicine and Drug Delivery: A Review. J. Inorg. Organomet. Polym. 2021, 31, 2246–2261. DOI: 10.1007/s10904-021-01925-2.
  • Pedziwiatr-Werbicka, E.; Milowska, K.; Dzmitruk, V.; Ionov, M.; Shcharbin, D.; Bryszewska, M. Dendrimers and Hyperbranched Structures for Biomedical Applications. Eur. Polym. J. 2019, 119, 61–73. DOI: 10.1016/j.eurpolymj.2019.07.013.
  • Zenze, M.; Daniels, A.; Singh, M. Dendrimers as Modifiers of Inorganic Nanoparticles for Therapeutic Delivery in Cancer. Pharmaceutics 2023, 15, 398. DOI: 10.3390/pharmaceutics15020398.
  • Mukherjee, S.; Mukherjee, S.; Abourehab, M. A.; Sahebkar, A.; Kesharwani, P. Exploring Dendrimer-Based Drug Delivery Systems and Their Potential Applications in Cancer Immunotherapy. Eur. Polym. J. 2022, 177, 111471. DOI: 10.1016/j.eurpolymj.2022.111471.
  • Plunkett, S.; El Khatib, M.; Şencan, İ.; Porter, J. E.; Kumar, A. T. N.; Collins, J. E.; SakadŽić, S.; Vinogradov, S. A. In Vivo Deep-Tissue Microscopy with UCNP/Janus-Dendrimers as Imaging Probes: Resolution at Depth and Feasibility of Ratiometric Sensing. Nanoscale 2020, 12, 2657–2672. DOI: 10.1039/c9nr07778b.
  • Rai, D. B.; Pooja, D.; Kulhari, H. Dendrimers in Gene Delivery. Pharmaceutical Applications of Dendrimers. Elsevier; 2020. p. 211–231
  • Ganjalinia, A.; Akbari, S.; Solouk, A. PLLA Scaffolds Surface-Engineered via Poly (Propylene Imine) Dendrimers for Improvement on Its Biocompatibility/Controlled pH Biodegradability. Appl. Surf. Sci. 2017, 394, 446–456. DOI: 10.1016/j.apsusc.2016.10.110.
  • Jouyban, A. Handbook of Solubility Data for Pharmaceuticals: Taylor and Francis, CRC press: Boca Raton, Florida; 2009.
  • Bezruk, I.; Vrakin, V.; Savchenko, L.; Materiienko, A.; Georgiyants, V. Development and Validation of Tetracycline Hydrochloride Assay Procedure by Spectrophotometry in Compounded Ointment. Script. Sci. Pharm. 2017, 4, 33–38. DOI: 10.14748/ssp.v4i1.2117.
  • 2010 ATM. Antibacterial Finishes Contextual Materials. Assess. Am. Assoc. Text. Chem. Color. Tech. Manual 1988, 76, 142–144.
  • Ghajarieh, A.; Habibi, S.; Talebian, A. Biomedical Applications of Nanofibers. Russ. J. Appl. Chem. 2021, 94, 847–872. DOI: 10.1134/S1070427221070016.
  • Phutane, P.; Telange, D.; Agrawal, S.; Gunde, M.; Kotkar, K.; Pethe, A. Biofunctionalization and Applications of Polymeric Nanofibers in Tissue Engineering and Regenerative Medicine. Polymers. (Basel) 2023, 15, 1202. DOI: 10.3390/polym15051202.
  • Rasouli, R.; Barhoum, A.; Bechelany, M.; Dufresne, A. Nanofibers for Biomedical and Healthcare Applications. Macromol. Biosci. 2019, 19, e1800256. DOI: 10.1002/mabi.201800256.
  • Golizadeh, M.; Karimi, A.; Gandomi-Ravandi, S.; Vossoughi, M.; Khafaji, M.; Joghataei, M. T.; Faghihi, F. Evaluation of Cellular Attachment and Proliferation on Different Surface Charged Functional Cellulose Electrospun Nanofibers. Carbohydr. Polym. 2019, 207, 796–805. DOI: 10.1016/j.carbpol.2018.12.028.
  • Li, H.; Huneault, M. A. Effect of Nucleation and Plasticization on the Crystallization of Poly (Lactic Acid). Polymer 2007, 48, 6855–6866. DOI: 10.1016/j.polymer.2007.09.020.
  • Jeznach, O.; Kołbuk, D.; Marzec, M.; Bernasik, A.; Sajkiewicz, P. Aminolysis as a Surface Functionalization Method of Aliphatic Polyester Nonwovens: Impact on Material Properties and Biological Response. RSC Adv. 2022, 12, 11303–11317. DOI: 10.1039/d2ra00542e.
  • Udovč, L.; Spreitzer, M.; Vukomanović, M. Towards Hydrophilic Piezoelectric poly-L-Lactide Films: Optimal Processing, Post-Heat Treatment and Alkaline Etching. Polym. J. 2020, 52, 299–311. DOI: 10.1038/s41428-019-0281-5.
  • Deb, P. K.; Kokaz, S. F.; Abed, S. N.; Paradkar, A.; Tekade, R. K. Pharmaceutical and Biomedical Applications of Polymers. Basic Fundamentals of Drug Delivery: Academic press: USA; 2019. p. 203–267
  • Pearce, A. K.; O'Reilly, R. K. Polymers for Biomedical Applications: The Importance of Hydrophobicity in Directing Biological Interactions and Application Efficacy. Biomacromolecules 2021, 22, 4459–4469. DOI: 10.1021/acs.biomac.1c00434.
  • Abebe, D. G.; Kandil, R.; Kraus, T.; Elsayed, M.; Fujiwara, T.; Merkel, O. M. Biodegradable Three-Layered Micelles and Injectable Hydrogels. Non-Viral Gene Delivery Vectors: Methods and Protocols 2016, 1445, 175–185.
  • Baumann, K.; Alm, J.; Norberg, M.; Ejehorn, M. Immediate Use after Reconstitution of a Biostimulatory Poly-L-Lactic Acid Injectable Implant. J. Drugs Dermatol. 2020, 19, 1199–1203. DOI: 10.36849/JDD.2020.5228.
  • Schwarz, B.; Merkel, O. M. Functionalized PEI and Its Role in Gene Therapy. Mater Matters 2017, 12, 421–444.
  • Rapp, B. E, BEBT-M M. Chapter 20-Surface Tension. Rapp Mechanics and Mathematics, editor Micro and Nano Technologies Elsevier. 2017, 421–444. DOI: 10.1016/C2012-0-02230-2.
  • Eriksson, M.; Claesson, P. M.; Järn, M.; Wallqvist, V.; Tuominen, M.; Kappl, M. Gas Capillaries and Capillary Forces at Superamphiphobic Surfaces: Effects of Liquid Surface Tension. 2020.
  • Bagbi, Y.; Pandey, A.; Solanki, P. R. Electrospun Nanofibrous Filtration Membranes for Heavy Metals and Dye Removal. Nanoscale Materials in Water Purification: Elsevier Science; 2019. p. 275–288
  • Jackson, K.; Ross, M.; Clark, J.; Dong, Z. Fabrication of Biofunctionalized PVA/PEI Nanofibers for Rare Earth Element Extraction from Coal Mine Tailings. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); 2022.
  • Menzies, K. L.; Jones, L. The Impact of Contact Angle on the Biocompatibility of Biomaterials. Optom. Vis. Sci. 2010, 87, 387–399. DOI: 10.1097/OPX.0b013e3181da863e.
  • Polak, M.; Berniak, K.; Szewczyk, P. K.; Karbowniczek, J. E.; Marzec, M. M.; Stachewicz, U. PLLA Scaffolds with Controlled Surface Potential and Piezoelectricity for Enhancing Cell Adhesion in Tissue Engineering. Appl. Surf. Sci. 2023, 621, 156835. DOI: 10.1016/j.apsusc.2023.156835.
  • Sishi, Z.; Bahig, J.; Kalugin, D.; Shoker, A.; Zhu, N.; Abdelrasoul, A. Influence of Clinical Hemodialysis Membrane Morphology and Chemistry on Protein Adsorption and Inflammatory Biomarkers Released: In-Situ Synchrotron Imaging, Clinical and Computational Studies. Biomed. Eng. Adv. 2023, 5, 100070. DOI: 10.1016/j.bea.2022.100070.
  • Sutthiwanjampa, C.; Hong, S.; Kim, W. J.; Kang, S. H.; Park, H. Hydrophilic Modification Strategies to Enhance the Surface Biocompatibility of Poly (Dimethylsiloxane)‐Based Biomaterials for Medical Applications. Adv. Mater. Int. 2023, 10, 2202333. DOI: 10.1002/admi.202202333.
  • Li, P.; Liang, C.; Zhang, Y.; Li, F.; Song, Y.; Shao, G. Polyethyleneimine High-Energy Hydrophilic Surface Interfacial Treatment toward Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces. 2016, 8, 32574–32580. DOI: 10.1021/acsami.6b09063.
  • Wu, S.; Li, G.; Liu, W.; Yu, D.; Li, G.; Liu, X.; Song, Z.; Wang, H.; Liu, H. Fabrication of Polyethyleneimine-Paper Composites with Improved Tribopositivity for Triboelectric Nanogenerators. Nano Energy 2022, 93, 106859. DOI: 10.1016/j.nanoen.2021.106859.
  • Ma, W.; Li, Y.; Gao, S.; Cui, J.; Qu, Q.; Wang, Y.; Huang, C.; Fu, G. Self-Healing and Superwettable Nanofibrous Membranes with Excellent Stability toward Multifunctional Applications in Water Purification. ACS Appl. Mater. Interfaces. 2020, 12, 23644–23654. DOI: 10.1021/acsami.0c05701.
  • Malik, S.; Sundarrajan, S.; Hussain, T.; Nazir, A.; Ayyoob, M.; Berto, F.; Ramakrishna, S. Sustainable Nanofibers in Tissue Engineering and Biomedical Applications. Mat. Des. Process. Comms. 2021, 3, e202. DOI: 10.1002/mdp2.202.
  • Stocco, T. D.; Bassous, N. J.; Zhao, S.; Granato, A. E.; Webster, T. J.; Lobo, A. O. Nanofibrous Scaffolds for Biomedical Applications. Nanoscale 2018, 10, 12228–12255. DOI: 10.1039/c8nr02002g.
  • Zhao, X.; Hu, H.; Wang, X.; Yu, X.; Zhou, W.; Peng, S. Super Tough Poly (Lactic Acid) Blends: A Comprehensive Review. RSC Adv. 2020, 10, 13316–13368. DOI: 10.1039/d0ra01801e.
  • Zeng, G.; Qiu, L.; Li, X.; Wen, T. Facile Fabrication of End-Functional PLLA with AIEgens via Ugi Reaction. Polymer 2022, 239, 124432. DOI: 10.1016/j.polymer.2021.124432.
  • Schoeller, J.; Itel, F.; Wuertz-Kozak, K.; Fortunato, G.; Rossi, R. M. pH-Responsive Electrospun Nanofibers and Their Applications. Polym. Rev. 2022, 62, 351–399. DOI: 10.1080/15583724.2021.1939372.
  • Ebrahimi, M.; Solouk, A.; Davoodi, A.; Akbari, S.; Nazarpak, M. H.; Nouri, A. Surface Heparinization of a Magnesium-Based Alloy: A Comparison Study of Aminopropyltriethoxysilane (APTES) and Polyamidoamine (PAMAM) Dendrimers. J. Funct. Biomater. 2022, 13, 296. DOI: 10.3390/jfb13040296.
  • Mosconi, E.; Selloni, A.; De Angelis, F. Solvent Effects on the Adsorption Geometry and Electronic Structure of Dye-Sensitized TiO2: A First-Principles Investigation. J. Phys. Chem. C 2012, 116, 5932–5940. DOI: 10.1021/jp209420h.
  • Amin, P. D.; Raimi-Abraham, B. T.; Shah, D. S.; Gurram, S. Chapter 21 - Medicated Topicals. In Adejare A, editor. Remington (Twenty-third Edition): Academic Press: USA; 2021. p. 381–393
  • Elmowafy, E. M.; Tiboni, M.; Soliman, M. E. Biocompatibility, Biodegradation and Biomedical Applications of Poly (Lactic Acid)/Poly (Lactic-co-Glycolic Acid) Micro and Nanoparticles. J. Pharm. Investig. 2019, 49, 347–380. DOI: 10.1007/s40005-019-00439-x.
  • Wang, S.; Liu, R.; Fu, Y.; Kao, W. J. Release Mechanisms and Applications of Drug Delivery Systems for Extended-Release. Expert Opin. Drug Deliv. 2020, 17, 1289–1304. DOI: 10.1080/17425247.2020.1788541.
  • Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Mohajeri, A.; Fattahi, A.; Sheervalilou, R.; Zarghami, N. An Overview on Application of Natural Substances Incorporated with Electrospun Nanofibrous Scaffolds to Development of Innovative Wound Dressings. Mini Rev. Med. Chem. 2018, 18, 414–427. DOI: 10.2174/1389557517666170308112147.
  • Razmshoar, P.; Bahrami, S. H.; Akbari, S. Functional Hydrophilic Highly Biodegradable PCL Nanofibers through Direct Aminolysis of PAMAM Dendrimer. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 1069–1080. DOI: 10.1080/00914037.2019.1655751.
  • Fereydouni, N.; Zangouei, M.; Darroudi, M.; Hosseinpour, M.; Gholoobi, A. Antibacterial Activity of Chitosan-Polyethylene Oxide Nanofibers Containing Silver Nanoparticles against Aerobic and Anaerobic Bacteria. J. Mol. Struct. 2023, 1274, 134304. DOI: 10.1016/j.molstruc.2022.134304.
  • Villarreal-Gómez, L. J.; Pérez-González, G. L.; Bogdanchikova, N.; Pestryakov, A.; Nimaev, V.; Soloveva, A.; Cornejo-Bravo, J. M.; Toledaño-Magaña, Y. Antimicrobial Effect of Electrospun Nanofibers Loaded with Silver Nanoparticles: Influence of Ag Incorporation Method. J. Nanomater. 2021, 2021, 1–15. DOI: 10.1155/2021/9920755.
  • Kannan, R.; Prabakaran, P.; Basu, R.; Pindi, C.; Senapati, S.; Muthuvijayan, V.; Prasad, E. Mechanistic Study on the Antibacterial Activity of Self-Assembled Poly (Aryl Ether)-Based Amphiphilic Dendrimers. ACS Appl. Bio Mater. 2019, 2, 3212–3224. DOI: 10.1021/acsabm.9b00140.
  • Aydin, O.; Kanarya, D.; Yilmaz, U.; Tunç, C. Ü. Determination of Optimum Ratio of Cationic Polymers and Small Interfering RNA with Agarose Gel Retardation Assay. Antisense RNA Design, Delivery, and Analysis: Springer US New York, NY; 2022. p. 117–128
  • Rasouli, R.; Barhoum, A. Advances in Nanofibers for Antimicrobial Drug Delivery. Handbook of Nanofibers: Springer International Publishing: Cham; 2019. p. 733–774.
  • Thangavel, K.; Roshini, T.; Balaprakash, V.; Gowrisankar, P.; Sudha, S.; Mohan, M. Structural, Morphological and Antibacterial Properties of ZnO Nanofibers Fabricated by Electrospinning Technique. Mater. Today: Proc. 2020, 33, 2160–2166.
  • Altinkok, C.; Sagdic, G.; Daglar, O.; Ercan Ayra, M.; Yuksel Durmaz, Y.; Durmaz, H.; Acik, G. A New Strategy for Direct Solution Electrospinning of Phosphorylated Poly (Vinyl Chloride)/Polyethyleneimine Blend in Alcohol Media. Eur. Polym. J. 2023, 183, 111750. DOI: 10.1016/j.eurpolymj.2022.111750.
  • Gan, N.; Sun, Q.; Peng, X.; Ai, P.; Wu, D.; Yi, B.; Xia, H.; Wang, X.; Li, H. MOFs-Alginate/Polyacrylic Acid/Poly (Ethylene Imine) Heparin-Mimicking Beads as a Novel Hemoadsorbent for Bilirubin Removal in Vitro and Vivo Models. Int. J. Biol. Macromol. 2023, 235, 123868. DOI: 10.1016/j.ijbiomac.2023.123868.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.