134
Views
0
CrossRef citations to date
0
Altmetric
Feature Article

Rapid polythioether synthesis and thioether network formation using thiol-yne chemistry of electron-deficient alkynes

, &
Pages 143-154 | Received 24 Jan 2024, Accepted 26 Feb 2024, Published online: 09 Mar 2024

References

  • Jones, M. W.; Haddleton, D. M. Nucleophilic Thiol-Alkene Michael Addition for the Functionalization of Polymers and for Bioconjugation. Thiol-X Chemistries in Polymer and Materials Science, The Royal Society of Chemistry: London, UK, 2013; pp 95–116. DOI: 10.1039/9781849736961-00095.
  • Fettes, E. M.; Jorczak, J. S. Polysulfide Polymers. Ind. Eng. Chem. 1950, 42, 2217–2223. DOI: 10.1021/ie50491a020.
  • Posner, T. BeiträgezurKenntniss der ungesättigtenVerbindungen. II. Ueber die Addition von Mercaptanen an ungesattigteKohlenwasserstoffe. Ber. Dtsch. Chem. Ges. 1905, 38, 646–657. DOI: 10.1002/cber.190503801106.
  • Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. DOI: 10.1002/1521-3773.
  • Tornøe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. DOI: 10.1021/jo011148j.
  • Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R. A Comparative Study of Bioorthogonal Reactions with Azides. ACS Chem. Biol. 2006, 1, 644–648. DOI: 10.1021/cb6003228.
  • Opsteen, J. A.; van Hest, J. C. Modular Synthesis of Block Copolymers via Cycloaddition of Terminal Azide and Alkyne Functionalized Polymers. Chem. Commun. 2005, 57–59. DOI: 10.1039/B412930J.
  • Malkoch, M.; Thibault, R. J.; Drockenmuller, E.; Messerschmidt, M.; Voit, B.; Russell, T. P.; Hawker, C. J. Orthogonal Approaches to the Simultaneous and Cascade Functionalization of Macromolecules Using Click Chemistry. J. Am. Chem. Soc. 2005, 127, 14942–14949. DOI: 10.1021/ja0549751.
  • Durmaz, H.; Colakoglu, B.; Tunca, U.; Hizal, G. Preparation of Block Copolymers via Diels Alder Reaction of Maleimide- and Anthracene-End Functionalized Polymers. J. Polym. Sci. A Polym. Chem. 2006, 44, 1667–1675. DOI: 10.1002/pola.21275.
  • Lutz, J, Nanotechnology for Life Science Research Group. F.1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science,Angew. Angew. Chem. Int. Ed. Engl. 2007, 46, 1018–1025. DOI: 10.1002/anie.200604050.
  • Durmaz, H.; Dag, A.; Altintas, O.; Erdogan, T.; Hizal, G.; Tunca, U. One-Pot Synthesis of ABC Type Triblock Copolymers via in Situ Click [3 + 2] and Diels − Alder [4 + 2] Reactions. Macromolecules 2007, 40, 191–198. DOI: 10.1021/ma061819l.
  • Iha, R. K.; Wooley, K. L.; Nyström, A. M.; Burke, D. J.; Kade, M. J.; Hawker, C. J. Applications of Orthogonal “Click” Chemistries in the Synthesis of Functional Soft Materials. Chem. Rev. 2009, 109, 5620–5686. DOI: 10.1021/cr900138t.
  • Sumerlin, B. S.; Vogt, A. P. Macromolecular Engineering through Click Chemistry and Other Efficient Transformations. Macromolecules 2009, 43, 1–13. DOI: 10.1021/ma901447e.
  • Hoyle, C. E.; Lowe, A. B.; Bowman, C. N. Thiol-Click Chemistry: A Multifaceted Toolbox for Small Molecule and Polymer Synthesis. Chem. Soc. Rev. 2010, 39, 1355–1387. DOI: 10.1039/B901979K.
  • Tunca, U. Click and Multicomponent Reactions Work Together for Polymer Chemistry, Macromol. Chem. Phys 2018, 219, 1800163. DOI: 10.1002/macp.201800163.
  • Tasdelen, M. A.; Kiskan, B.; Yagci, Y. Externally Stimulated Click Reactions for Macromolecular Syntheses, Y. Prog. Polym. Sci. 2016, 52, 19–78. DOI: 10.1016/j.progpolymsci.2015.09.003.
  • Delaittre, G.; Guimard, N. K.; Barner-Kowollik, C. Cycloadditions in Modern Polymer Chemistry. Acc. Chem. Res. 2015, 48, 1296–1307. DOI: 10.1021/acs.accounts.5b00075.
  • Hoyle, C. E.; Bowman, C. N. Thiol-Ene Click Chemistry. Angew. Chem. Int. Ed. Engl. 2010, 49, 1540–1573. DOI: 10.1002/anie.200903924.
  • Hoyle, C. E.; Lee, T. Y.; Roper, T. Thiol-Enes: Chemistry of the past with Promise for the Future. J. Polym. Sci. A Polym. Chem. 2004, 42, 5301–5338. DOI: 10.1002/pola.20366.
  • Lowe, A. B. Thiol-Ene “Click” Reactions and Recent Applications in Polymer and Materials Synthesis. Polym. Chem. 2010, 1, 17–36. DOI: 10.1039/B9PY00216B.
  • Lowe, A. B. Thiol-Ene “Click” Reactions and Recent Applications in Polymer and Materials Synthesis: A First Update. Polym. Chem. 2014, 5, 4820–4870. DOI: 10.1039/C4PY00339J.
  • Nair, D. P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C. R.; Bowman, C. N. The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry. Chem. Mater. 2014, 26, 724–744. DOI: 10.1021/cm402180t.
  • Stuparu, M. C.; Khan, A. Poly(ß-Hydroxy Thioether)s: Synthesis through Thiol-Epoxy‘Click’reaction Andpost-Polymerization Modification to Main-Chain Polysulfonium Salts. Journal of Macromolecular Science, Part A. 2022, 59, 2–10. DOI: 10.1080/10601325.2021.1984849.
  • Cakmakci. E.Recent Advances in Flame Retardant Polymers via Thiol-Ene Click Chemistry. J. Macromol. Sci. Part A: Pure Appli. Chem. 2023, 60, 817–840. DOI: 10.1080/10601325.2023.2280237.
  • Agar, S.; Baysak, E.; Hizal, G.; Tunca, U.; Durmaz, H. An Emerging Post-Polymerization Modification Technique: The Promise of Thiol-Para-Fluoro Click Reaction. J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 1181–1198. DOI: 10.1002/pola.29004.
  • Chan, J. W.; Hoyle, C. E.; Lowe, A. B.; Bowman, M. Nucleophile-Initiated Thiol-Michael Reactions: Effect of Organocatalyst, Thiol, and Ene. Macromolecules 2010, 43, 6381–6388. DOI: 10.1021/ma101069c.
  • Chan, J. W.; Yu, B.; Hoyle, C. E.; Lowe, A. B. The Nucleophilic, Phosphine-Catalyzed Thiol-Ene Click Reaction and Convergent Star Synthesis with RAFT-Prepared Homopolymers. Polymer 2009, 50, 3158–3168. DOI: 10.1016/j.polymer.2009.04.030.
  • Durmaz, H.; Butun, M.; Hizal, G.; Tunca, U. Postfunctionalization of Polyoxanorbornene via Sequential Michael Addition and Radical Thiol-Ene Click Reactions. J. Polym. Sci. A Polym. Chem. 2012, 50, 3116–3125. DOI: 10.1002/pola.26098.
  • Espeel, P.; Du Prez, F. E. “Click”-Inspired Chemistry in Macromolecular Science: Matching Recent Progress and User Expectations. Macromolecules 2015, 48, 2–14. DOI: 10.1021/ma501386v.
  • Daglar, O.; Ozcan, B.; Gunay, U. S.; Hizal, G.; Tunca, U.; Durmaz, H. Extremely Rapidpostfunctionalization of Maleate and Fumarate Main Chain Polyesters in the Presence of TBD. Polymer 2019, 182, 121844. DOI: 10.1016/j.polymer.2019.121844.
  • Goldmann, A. S.; Glassner, M.; Inglis, A. J.; Barner-Kowollik, C. Post-Functionalization of Polymers via Orthogonal Ligation Chemistry. Macromol. Rapid Commun. 2013, 34, 810–849. DOI: 10.1002/marc.201300017.
  • Hoogenboom, R. Thiol-Yne Chemistry: A Powerful Tool for Creating Highly Functional Materials. Angew. Chem. Int. Ed. Engl. 2010, 49, 3415–3417. DOI: 10.1002/anie.201000401.
  • Kohsaka, Y.; Hagiwara, K.; Ito, K. Polymerization of α- (Halomethyl)Acrylates through Sequential Nucleophilic Attack of Dithiols Using a Combination of Addition-Elimination and Click Reactions. Polym. Chem. 2017, 8, 976–979. DOI: 10.1039/C6PY02145J.
  • Kohsaka, Y.; Miyazaki, T.; Hagiwara, K. Conjugate Substitution and Addition of α-Substituted Acrylate: A Highly Efficient, Facile, Convenient, and Versatile Approach to Fabricate Degradable Polymers by Dynamic Covalent Chemistry. Polym. Chem. 2018, 9, 1610–1617. DOI: 10.1039/C7PY02114C.
  • Lowe, A. B. Thiol-Yne ‘Click’/Coupling Chemistry and Recent Applications in Polymer and Materials Synthesis and Modification. Polymer 2014, 55, 5517–5549. DOI: 10.1016/j.polymer.2014.08.015.
  • Lowe, A. B.; Hoyle, C. E.; Bowman, C. N. Thiol-Yne Click Chemistry: A Powerful and Versatile Methodology for Materials Synthesis. J. Mater. Chem. 2010, 20, 4745–4750. DOI: 10.1039/b917102a.
  • Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E. Michael Addition Reactions in Macromolecular Design for Emerging Technologies. Prog. Polym. Sci. 2006, 31, 487–531. DOI: 10.1016/j.progpolymsci.2006.03.001.
  • Muzammil, E. M.; Khan, A.; Stuparu, M. C. Post-Polymerization Modification Reactions of Poly(Glycidyl Methacrylate)s. RSC Adv. 2017, 7, 55874–55884. DOI: 10.1039/C7RA11093F.
  • Gunay, U. S.; Cetin, M.; Daglar, O.; Hizal, G.; Tunca, U.; Durmaz, H. Ultrafast and Efficient Aza-and thiol-Michael Reactions on a Polyester Scaffold with Internal Electron Deficient Triple Bonds. Polym. Chem. 2018, 9, 3037–3054. DOI: 10.1039/C8PY00485D.
  • Daglar, O.; Gunay, U. S.; Hizal, G.; Tunca, U.; Durmaz, H. Extremely Rapid Polythioether Synthesis in the Presence of TBD. Macromolecules 2019, 52, 3558–3572. DOI: 10.1021/acs.macromol.9b00293.
  • Bossion, A.; Heifferon, K. V.; Meabe, L.; Zivic, N.; Taton, D.; Hedrick, J. L.; Long, T. E.; Sardon, H. Opportunities for Organocatalysis in Polymer Synthesis via Step-Growth Methods. Prog. Polym. Sci. 2019, 90, 164–210. DOI: 10.1016/j.progpolymsci.2018.11.003.
  • Dove, A. P. Organic Catalysis for Ring-Opening Polymerization. ACS Macro Lett. 2012, 1, 1409–1412. DOI: 10.1021/mz3005956.
  • Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.; Hedrick, J. L. Organocatalytic Ring-Opening Polymerization. Chem. Rev. 2007, 107, 5813–5840. DOI: 10.1021/cr068415b.
  • Lohmeijer, B. G. G.; Pratt, R. C.; Leibfarth, F.; Logan, J. W.; Long, D. A.; Dove, A. P.; Nederberg, F.; Choi, J.; Wade, C.; Waymouth, R. M.; Hedrick, J. L. Guanidine and Amidine Organocatalysts for Ring-Opening Polymerization of Cyclic Esters. Macromolecules 2006, 39, 8574–8583. DOI: 10.1021/ma0619381.
  • Nederberg, F.; Connor, E. F.; Möller, M.; Glauser, T.; Hedrick, J. L. New Paradigms for Organic Catalysts: The First Organocatalytic Living Polymerization. Angew. Chem. Int. Ed. 2001, 40, 2712–2715. DOI: 10.1002/1521-3773(20010716)40:14%3C2712::AID-ANIE2712%3E3.0.CO;2-Z.
  • Turockin, A. 1,5,7-Triazabicyclo [4.4.0] Dec-5-Ene (TBD) as a Lewis Base. Synlett 2014, 25, 894–895. DOI: 10.1055/s-0033-1340852.
  • Dirauf, M.; Bandelli, D.; Weber, C.; Görls, H.; Gottschaldt, M.; Schubert, U. S. TBD-Catalyzed Ring-Opening Polymerization of Alkyl-Substituted Morpholine-2,5-Dione Derivatives. Macromol. Rapid Commun. 2018, 39, 1800433. DOI: 10.1002/marc.201800433.
  • Easterling, C. P.; Kubo, T.; Orr, Z. M.; Fanucci, G. E.; Sumerlin, B. S. Synthetic Upcycling of Polyacrylates through Organocatalyzed Post-Polymerization Modification. Chem. Sci. 2017, 8, 7705–7709. DOI: 10.1039/C7SC02574B.
  • Horn, H. W.; Jones, G. O.; Wei, D. S.; Fukushima, K.; Lecuyer, J. M.; Coady, D. J.; Hedrick, J. L.; Rice, J. E. Mechanisms of Organocatalytic Amidation and Trans-Esterification of Aromatic Esters as a Model for the Depolymerization of Poly(Ethylene) Terephthalate. J. Phys. Chem. A 2012, 116, 12389–12398. DOI: 10.1021/jp304212y.
  • Kiesewetter, M. K.; Scholten, M. D.; Kirn, N.; Weber, R. L.; Hedrick, J. L.; Waymouth, R. M. Cyclic Guanidine Organic Catalysts: What is Magic about Triazabicyclodecene? J. Org. Chem. 2009, 74, 9490–9496. DOI: 10.1021/jo902369g.
  • Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R. M.; Hedrick, J. L. Triazabicyclodecene: A Simple Bifunctional Organocatalyst for Acyl Transfer and Ring-Opening Polymerization of Cyclic Esters. J. Am. Chem. Soc. 2006, 128, 4556–4557. DOI: 10.1021/ja060662+.
  • Ruiz-Cantu, L. A.; Pearce, A. K.; Burroughs, L.; Bennett, T. M.; Vasey, C. E.; Wildman, R.; Irvine, D. J.; Alexander, C.; Taresco, V. Synthesis of Methacrylate-Terminated Block Copolymers with Reduced Transesterification by Controlled Ring-Opening Polymerization. Macro. Chemistry & Physics 2019, 220. DOI: 10.1002/macp.201800459.
  • Simón, L.; Goodman, J. M. The Mechanism of TBD-Catalyzed Ring-Opening Polymerization of Cyclic Esters. J. Org. Chem. 2007, 72, 9656–9662. DOI: 10.1021/jo702088c.
  • Daglar, O.; Cakmakci, E.; Gunay, U. S.; Hizal, G.; Tunca, U.; Durmaz, H. A Straightforward Method for Fluorinated Polythioether Synthesis. Macromolecules 2020, 53, 2965–2975. DOI: 10.1021/acs.macromol.0c00548.
  • Daglar, O.; Alkan, B.; Gunay, U. S.; Hizal, G.; Tunca, U.; Durmaz, H. Ultrafast Synthesis of Phosphorus-Containing Polythioethers in the Presence of TBD. Eur. Polym. J. 2021, 162, 110931. DOI: 10.1016/j.eurpolymj.2021.110931.
  • Daglar, O.; Gungor, B.; Guric, G.; Gunay, U. S.; Hizal, G.; Tunca, U.; Durmaz, H. Rapid Hyperbranched Polythioether Synthesis through Thiol-Michael Addition Reaction. J. Polym.Sci 2020, 58, 824–830. DOI: 10.1002/pol.20190279.
  • Pektas, B.; Sagdic, G.; Daglar, O.; Luleburgaz, S.; Gunay, U. S.; Hizal, G.; Tunca, U.; Durmaz, H. Ultrafast Synthesis of Dialkyne-Functionalized Polythioether and Post-Polymerization Modification via Click Chemistry. Polymer 2022, 253, 124989. DOI: 10.1016/j.polymer.2022.124989.
  • Sagdic, G.; Gunay, U. S. Post-Polymerization Modification of Pentafluorophenyl-Functionalizedpolythioether via Thiol-Para-Fluoro Click Reaction. J. Macromol. Sci. Part A: Pure Appli. Chem. 2023, 60, 548–556. DOI: 10.1080/10601325.2023.2227651.
  • Daglar, O.; Çakmakçı, E.; Hizal, G.; Tunca, U.; Durmaz, H. Extremely Fast Synthesis of polythioether Based Phase Change Materials (PCMs) for Thermal Energy Storage. Eur. Polym. J. 2020, 130, 109681. DOI: 10.1016/j.eurpolymj.2020.109681.
  • Daglar, O.; Çakmakçi, E.; Gunay, U. S.; Hizal, G.; Tunca, U.; Durmaz, H. Acetylene Dicarboxylic Acid Diallyl Ester: A Versatile Monomer for Thiol–Ene Photocured Networks. Macro. Mater. Eng. 2021, 306. DOI: 10.1002/mame.202100427.
  • Sagdic, G.; Cakmakci, E.; Daglar, O.; Gunay, U. S.; Hizal, G.; Tunca, U.; Durmaz, H. Thermal and Mechanical Properties of Thiol-Ene Photocured Thermosets Containing DOPO-Based Liquid Reactive Flame Retardant Synthesized by Metal-Free Azide-Alkyne Click Reaction. Prog. Org. Coat. 2022, 167, 106825. DOI: 10.1016/j.porgcoat.2022.106825.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.