395
Views
35
CrossRef citations to date
0
Altmetric
Research Article

RGD-modified polymeric micelles as potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells

, , , , , & show all
Pages 459-467 | Received 22 Feb 2009, Accepted 16 Apr 2009, Published online: 19 May 2009

References

  • Allen C, Yu Y, Eisenberg A, Maysinger D. (1999). Cellular internalization of PCL(20)-b-PEO(44) block copolymer micelles. Biochim Biophys Acta, 1421, 32–38.
  • Arap W, Pasqualini R, Ruoslahti E. (1998). Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 279, 377–380.
  • Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Livaniou E, Evangelatos G, Ithakissios DS. (2003). Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA-mPEG nanoparticles. Int J Pharm, 259, 115–127.
  • Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. (2005). Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem, 16, 122–130.
  • Brignole C, Pastorino F, Marimpietri D, Pagnan G, Pistorio A, Allen TM, Pistoia V, Ponzoni M. (2004). Immune cell-mediated antitumor activities of GD2-targeted liposomal c-myb antisense oligonucleotides containing CpG motifs. J Natl Cancer Inst, 96, 1171–1180.
  • Carmeliet P, Jain RK. (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249–257.
  • Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC. (2007). Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 28, 869–876.
  • Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R. (2006). Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA, 103, 6315–6320.
  • Folkman J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med, 1, 27–31.
  • Gao Z, Lukyanov AN, Chakilam AR, Torchilin VP. (2003). PEG-PE/phosphatidylcholine mixed immunomicelles specifically deliver encapsulated taxol to tumor cells of different origin and promote their efficient killing. J Drug Target, 11, 87–92.
  • Garde SV, Forte AJ, Ge M, Lepekhin EA, Panchal CJ, Rabbani SA, Wu JJ. (2007). Binding and internalization of NGR-peptide-targeted liposomal doxorubicin (TVT-DOX) in CD13-expressing cells and its antitumor effects. Anticancer Drugs, 18, 1189–1200.
  • Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA. (2002). Tumor regression by targeted gene delivery to the neovasculature. Science, 296, 2404–2407.
  • Jaffe EA, Nachman RL, Becker CG, Minick CR. (1973). Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest, 52, 2745–2756.
  • Jule E, Nagasaki Y, Kataoka K. (2003). Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study. Bioconjug Chem, 14, 177–186.
  • Kawano K, Watanabe M, Yamamoto T, Yokoyama M, Opanasopit P, Okano T, Maitani Y. (2006). Enhanced antitumor effect of camptothecin loaded in long-circulating polymeric micelles. J Control Release, 112, 329–332.
  • Lavasanifar A, Samuel J, Kwon GS. (2002). Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev, 5, 169–190.
  • Liang HF, Yang TF, Huang CT, Chen MC, Sung HW. (2005). Preparation of nanoparticles composed of poly(gamma-glutamic acid)-poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J Control Release, 105, 213–225.
  • Lu W, Wan J, She Z, Jiang X. (2007). Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release, 118, 38–53.
  • Mahmud A, Lavasanifar A. (2005). The effect of block copolymer structure on the internalization of polymeric micelles by human breast cancer cells. Colloids Surf B Biointerface, 45, 82–89.
  • Maysinger D, Berezovska O, Savic R, Soo PL, Eisenberg A. (2001). Block copolymers modify the internalization of micelle-incorporated probes into neural cells. Biochim Biophys Acta, 1539, 205–217.
  • Moase EH, Qi W, Ishida T, Longenecker BM, Zimmermann GL, Ding L, Krantz M, Allen TM. (2001). Anti-MUC-1 immunoliposomal doxorubicin in the treatment of murine models of metastatic breast cancer. Biochim Biophys Acta, 1510, 43–55.
  • Mukhopadhyay S, Barnes CM, Haskel A, Short SM, Barnes KR, Lippard SJ. (2008). Conjugated platinum(IV)-peptide complexes for targeting angiogenic tumor vasculature. Bioconjug Chem, 19, 39–49.
  • Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, Gao J. (2004). cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed Engl, 43, 6323–6327.
  • Pastorino F, Brignole C, Di Paolo D, Nico B, Pezzolo A, Marimpietri D, Pagnan G, Piccardi F, Cilli M, Longhi R, Ribatti D, Corti A, Allen TM, Ponzoni M. (2006). Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res, 66, 10073–10082.
  • Ruoslahti E. (1996). RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol, 12, 697–715.
  • Schiffelers RM, Konin GA, ten Hagen TL, Fens MH, Schraa AJ, Janssen AP, Kok RJ, Molema G, Storm G. (2003). Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release, 91, 115–122.
  • Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC. (2004). Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res, 32, e149.
  • Suzuki R, Takizawa T, Kuwata Y, Mutoh M, Ishiguro N, Utoguchi N, Shinohara A, Eriguchi M, Yanagie H, Maruyama K. (2008). Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm, 346, 143–150.
  • Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. (2003). Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA, 100, 6039–6044.
  • Townsend SA, Evrony GD, Gu FX, Schulz MP, Brown RH Jr, Langer R. (2007). Tetanus toxin C fragment-conjugated nanoparticles for targeted drug delivery to neurons. Biomaterials, 28, 5176–5184.
  • Xiong XB, Huang Y, Lu WL, Zhang H, Zhang X, Zhang Q. (2005a). Enhanced intracellular uptake of sterically stabilized liposomal doxorubicin in vitro resulting in improved antitumor activity in vivo. Pharm Res, 22, 933–939.
  • Xiong XB, Huang Y, Lu WL, Zhang X, Zhang H, Nagai T, Zhang Q. (2005b). Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic. J Control Release, 107, 262–275.
  • Xiong XB, Huang Y, Lu WL, Zhang X, Zhang H, Nagai T, Zhang Q. (2005c). Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy: in vitro and in vivo. J Pharm Sci, 94, 1782–1793.
  • Xiong XB, Mahmud A, Uludag H, Lavasanifar A. (2007). Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(epsilon-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells. Biomacromolecules, 8, 874–884.
  • Yoo HS, Park TG. (2004). Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release, 96, 273–283.
  • Zeng F, Lee H, Allen C. (2006). Epidermal growth factor-conjugated poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics. Bioconjug Chem, 17, 399–409.
  • Zhao H, Wang JC, Sun QS, Luo CL, Zhang Q. (2009). RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer. J Drug Target, 17, 10–18.
  • Zitzmann S, Ehemann V, Schwab M. (2002). Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Res, 62, 5139–5143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.