382
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Olaparib@human serum albumin nanoparticles as sustained drug-releasing tumour-targeting nanomedicine to inhibit growth and metastasis in the mouse model of triple-negative breast cancer

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1088-1105 | Received 11 Mar 2022, Accepted 15 Jun 2022, Published online: 03 Jul 2022

References

  • Guney Eskiler G, Cecener G, Egeli U, et al. Triple negative breast cancer: new therapeutic approaches and BRCA status. APMIS. 2018;126:371–379.
  • Gerratana L, Basile D, Buono G, et al. Androgen receptor in triple negative breast cancer: a potential target for the targetless subtype. Cancer Treat Rev. 2018;68:102–110.
  • Le D, Gelmon KA. Olaparib tablets for the treatment of germ line BRCA-mutated metastatic breast cancer. Expert Rev Clin Pharmacol. 2018;11:833–839.
  • Belli C, Duso BA, Ferraro E, et al. Homologous recombination deficiency in triple negative breast cancer. Breast. 2019;45:15–21.
  • Bianchini G, Balko JM, Mayer IA, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13:674–690.
  • Hongthong K, Ratanaphan A. BRCA1-associated triple-negative breast cancer and potential treatment for ruthenium-based compounds. Curr Cancer Drug Targets. 2016;16:606–617.
  • del Rivero J, Kohn EC. PARP inhibitors: the cornerstone of DNA repair-targeted therapies. Oncology (Williston Park). 2017;31:265–273.
  • D’Andrea AD. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst). 2018;71:172–176.
  • Murai J, Huang S-YN, Das BB, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72:5588–5599.
  • Arun B, Akar U, Gutierrez-Barrera AM, et al. The PARP inhibitor AZD2281 (olaparib) induces autophagy/mitophagy in BRCA1 and BRCA2 mutant breast cancer cells. Int J Oncol. 2015;47(1):262–268.
  • Mao Y, Huang X, Shuang Z, et al. PARP inhibitor olaparib sensitizes cholangiocarcinoma cells to radiation. Cancer Med. 2018;7:1285–1296.
  • Robson M, Im S-A, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377:523–533.
  • Griguolo G, Dieci MV, Guarneri V, et al. Olaparib for the treatment of breast cancer. Expert Rev Anticancer Ther. 2018;18:519–530.
  • Robson ME, Tung N, Conte P, et al. OlympiAD final overall survival and tolerability results: olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann Oncol. 2019;30:558–566.
  • Pop L, Suciu I, Ionescu O, et al. The role of novel poly (ADP-ribose) inhibitors in the treatment of locally advanced and metastatic her-2/neu negative breast cancer with inherited germline BRCA1/2 mutations. A review of the literature. J Med Life. 2021;14(1):17–20.
  • Du C, Qi Y, Zhang Y, et al. Epidermal growth factor Receptor-Targeting peptide nanoparticles simultaneously deliver gemcitabine and olaparib to treat pancreatic cancer with breast cancer 2 (BRCA2) mutation. ACS Nano. 2018;12:10785–10796.
  • Zhang Y, Hu H, Tang W, et al. A multifunctional magnetic nanosystem based on "two strikes" effect for synergistic anticancer therapy in triple-negative breast cancer. J Control Release. 2020;322:401–415.
  • de Bono J, Mateo J, Fizazi K, et al. Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 2020;382:2091–2102.
  • van de Ven AL, Tangutoori S, Baldwin P, et al. Nanoformulation of olaparib amplifies PARP inhibition and sensitizes PTEN/TP53-Deficient prostate cancer to radiation. Mol Cancer Ther. 2017;16:1279–1289.
  • Wu M, Liu J, Hu C, et al. Olaparib nanoparticles potentiated radiosensitization effects on lung cancer. IJN. 2018;13:8461–8472.
  • Li D, Hu C, Yang J, et al. Enhanced anti-cancer effect of folate-conjugated olaparib nanoparticles combined with radiotherapy in cervical carcinoma. Int J Nanomed. 2020;15:10045–10058.
  • McCrorie P, Mistry J, Taresco V, et al. Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. Eur J Pharm Biopharm. 2020;157:108–120.
  • Novohradsky V, Zajac J, Vrana O, et al. Simultaneous delivery of olaparib and carboplatin in PEGylated liposomes imparts this drug combination hypersensitivity and selectivity for breast tumor cells. Oncotarget. 2018;9:28456–28473.
  • Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132:171–183.
  • Hoogenboezem EN, Duvall CL. Harnessing albumin as a carrier for cancer therapies. Adv Drug Deliv Rev. 2018;130:73–89.
  • Kumari P, Rompicharla SVK, Muddineti OS, et al. Transferrin-anchored poly(lactide) based micelles to improve anticancer activity of curcumin in hepatic and cervical cancer cell monolayers and 3D spheroids. Int J Biol Macromol. 2018;116:1196–1213.
  • Kumari P, Paul M, Bhatt H, et al. Chlorin e6 conjugated methoxy-poly (ethylene glycol)-poly (d, l-lactide) glutathione sensitive micelles for photodynamic therapy. Pharm Res. 2020;37:1–7.
  • Muddineti OS, Kumari P, Ajjarapu S, et al. Xanthan gum stabilized PEGylated gold nanoparticles for improved delivery of curcumin in cancer. Nanotechnology. 2016;27:325101.
  • Varlan A, Hillebrand M. Bovine and human serum albumin interactions with 3-Carboxyphenoxathiin studied by fluorescence and circular dichroism spectroscopy. Molecules. 2010;15:3905–3919.
  • Muddineti OS, Kumari P, Ghosh B, et al. d-α-Tocopheryl succinate/phosphatidyl ethanolamine conjugated amphiphilic Polymer-Based nanomicellar system for the efficient delivery of curcumin and to overcome multiple drug resistance in cancer. ACS Appl Mater Interfaces. 2017;9:16778–16792.
  • Kumari P, Rompicharla SVK, Bhatt H, et al. Development of chlorin e6-conjugated poly(ethylene glycol)-poly(d,l-lactide) nanoparticles for photodynamic therapy. Nanomedicine (Lond). 2019;14:819–834.
  • Muddineti OS, Kumari P, Ray E, et al. Curcumin-loaded chitosan–cholesterol micelles: evaluation in monolayers and 3D cancer spheroid model. Nanomedicine (Lond). 2017;12:1435–1453.
  • Itoo AM, Paul M, Ghosh B, et al. Oxaliplatin delivery via chitosan/vitamin E conjugate micelles for improved efficacy and MDR-reversal in breast cancer. Carbohydr Polym. 2022;282:119108.
  • Gong G, Zhi F, Wang K, et al. Fabrication of a nanocarrier system through self-assembly of plasma protein and its tumor targeting. Nanotechnology. 2011;22:295603.
  • Taheri A, Atyabi F, Salman Nouri F. Nanoparticles of conjugated Methotrexate-Human serum albumin: preparation and cytotoxicity evaluations. J Nanomater. 2011;2011:768201.
  • Paul S, Sepay N, Sarkar S, et al. Interaction of serum albumins with fluorescent ligand 4-Azido coumarin: spectroscopic analysis and molecular docking studies. New J Chem. 2017;41:15392–15404.
  • Capomaccio R, Osório I, Ojea-Jiménez I, et al. Gold nanoparticles increases UV and thermal stability of human serum albumin. Biointerphases. 2016;11:04B310.
  • Luna-Vázquez-Gómez R, Arellano-García ME, García-Ramos JC, et al. Hemolysis of human erythrocytes by argovit™ AgNPs from healthy and diabetic donors: an in vitro study. Materials. 2021;14:2792. Jan
  • Choi J, Reipa V, Hitchins VM, et al. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci. 2011;123(1):133–143.
  • Hu H, Zhang Y, Ji W, et al. Hyaluronic acid-coated and olaparib-loaded PEI − PLGA nanoparticles for the targeted therapy of triple negative breast cancer. J Microencapsulation. 2022;39:25–22.
  • Misra R, Patra B, Varadharaj S, et al. Establishing the promising role of novel combination of triple therapeutics delivery using polymeric nanoparticles for triple negative breast cancer therapy. Bioimpacts. 2021;11:199–207.
  • Lee JH, Moon H, Han H, et al. Antitumor effects of intra-arterial delivery of albumin-doxorubicin nanoparticle conjugated microbubbles combined with ultrasound-targeted microbubble activation on VX2 rabbit liver tumors. Cancers. 2019;11:581.
  • Yang X, Ndawula C, Zhou H, et al. JF-305, a pancreatic cancer cell line is highly sensitive to the PARP inhibitor olaparib. Oncol Lett. 2015;9:757–761.
  • Liu WB, Zhou J, Qu Y, et al. Neuroprotective effect of osthole on MPP+-induced cytotoxicity in PC12 cells via inhibition of mitochondrial dysfunction and ROS production. Neurochem Int. 2010;57:206–215.
  • Jiang S, Zhu R, He X, et al. Enhanced photocytotoxicity of curcumin delivered by solid lipid nanoparticles. Int J Nanomed. 2017;12:167–178.
  • Kumari P, Jain S, Ghosh B, et al. Polylactide-based block copolymeric micelles loaded with chlorin e6 for photodynamic therapy: in vitro evaluation in monolayer and 3D spheroid models. Mol Pharm. 2017;14:3789–3800.
  • Bhatt H, Ghosh B, Biswas S. Cell-penetrating peptide and α-tocopherol-conjugated poly (amidoamine) dendrimers for improved delivery and anticancer activity of loaded paclitaxel. ACS Appl Bio Mater. 2020;3:3157–3169.
  • Marcucci F, Corti A. How to improve exposure of tumor cells to drugs—promoter drugs increase tumor uptake and penetration of effector drugs. Adv Drug Deliv Rev. 2012;64(1):53–68.
  • Atiya HI, Dvorkin-Gheva A, Hassell J, et al. Intraductal adaptation of the 4T1 mouse model of breast cancer reveals effects of the epithelial microenvironment on tumor progression and metastasis. Anticancer Res. 2019;39:2277–2287.
  • Li W, Li X, Liu S, et al. Gold nanoparticles attenuate metastasis by tumor vasculature normalization and epithelial–mesenchymal transition inhibition. Int J Nanomed. 2017;12:3509–3520.
  • Xu K, Chen Z, Cui Y, et al. Combined olaparib and oxaliplatin inhibits tumor proliferation and induces G2/M arrest and γ-H2AX foci formation in colorectal cancer. Onco Targets Ther. 2015;8:3047–3054.
  • Kalyane D, Raval N, Maheshwari R, et al. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl. 2019;98:1252–1276.
  • Kumbham S, Paul M, Itoo A, et al. Oleanolic acid-conjugated human serum albumin nanoparticles encapsulating doxorubicin as synergistic combination chemotherapy in oropharyngeal carcinoma and melanoma. Int J Pharm. 2022;614:121479.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.