320
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Application of nanotechnology in management and treatment of diabetic wounds

, , , , , , , & ORCID Icon show all
Pages 1034-1054 | Received 25 Mar 2022, Accepted 15 Jun 2022, Published online: 30 Jun 2022

References

  • Okur ME, Karantas ID, Şenyiğit Z, et al. Recent trends on wound management: new therapeutic choices based on polymeric carriers. Asian J Pharm Sci. 2020;15(6):661–684.
  • Maleki A, He J, Bochani S, et al. Multifunctional photoactive hydrogels for Wound Healing Acceleration. ACS Nano. 2021; 15(12):18895–18930.
  • Gadelkarim M, Abushouk AI, Ghanem E, et al. Adipose-derived stem cells: effectiveness and advances in delivery in diabetic wound healing. Biomed Pharmacother. 2018; 107:625–633.
  • Holl J, Kowalewski C, Zimek Z, et al. Chronic diabetic wounds and their treatment with skin substitutes. Cells. 2021;10(3):655.
  • Spampinato SF, Caruso GI, De Pasquale R, et al. The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals. 2020;13(4):60.
  • Patel S, Srivastava S, Singh MR, et al. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. 2019;112:108615.
  • Liang Y, Li M, Yang Y, et al. pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano. 2022; 16(2):3194–3207.
  • Li JY, Lv F, Xu H, et al. A patterned nanocomposite membrane for high-efficiency healing of diabetic wound. J Mater Chem B. 2017;5(10):1926–1934.
  • Forsythe RO, Brownrigg J, Hinchliffe RJ. Peripheral arterial disease and revascularization of the diabetic foot. Diabetes Obes Metab. 2015;17(5):435–444.
  • Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013; 17(1):20–33.
  • Dwivedi C, Pandey H, Pandey AC, et al. In vivo biocompatibility of electrospun biodegradable dual carrier (antibiotic + growth factor) in a mouse model—implications for rapid wound healing. Pharmaceutics. 2019;11(4):180.
  • Paschou SA, Stamou M, Vuagnat H, et al. Pain management of chronic wounds: diabetic ulcers and beyond. Maturitas. 2018;117:17–21.
  • Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther. 2014; 31(8):817–836.
  • Heras KL, Igartua M, Santos-Vizcaino E, et al. Chronic wounds: current status, available strategies and emerging therapeutic solutions. J Control Release. 2020;328:532–550.
  • Kim HS, Sun XY, Lee JH, et al. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev. 2019;146:209–239.
  • Dong R, Guo B. Smart wound dressings for wound healing. Nano Today. 2021; 41:101290.
  • Blanco-Fernandez B, Castaño O, Mateos-Timoneda M, et al. Nanotechnology approaches in chronic wound healing. Adv Wound Care (New Rochelle). 2021; 10(5):234–256.
  • Hamdan S, Pastar I, Drakulich S, et al. Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Cent Sci. 2017;3(3):163–175.
  • Uppal S, Italiya KS, Chitkara D, et al. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: an emerging paradigm for effective therapy. Acta Biomater. 2018;81:20–42.
  • Choudhury H, Pandey M, Lim YQ, et al. Silver nanoparticles: advanced and promising technology in diabetic wound therapy. Mater Sci Eng C-Mater Biol Appl. 2020;112:110925.
  • Lee CH, Liu KS, Cheng CW, et al. Codelivery of sustainable antimicrobial agents and platelet-derived growth factor via biodegradable nanofibers for repair of diabetic infectious wounds. ACS Infect Dis. 2020;6(10):2688–2697.
  • Gainza G, Bonafonte DC, Moreno B, et al. The topical administration of rhEGF-loaded nanostructured lipid carriers (rhEGF-NLC) improves healing in a porcine full-thickness excisional wound model. J Control Release. 2015;197:41–47.
  • Chua S-K, Fu J-Y, Zulfakar MH, et al. Optimisation and biological evaluation of palm glyceryl monocaprylate antimicrobial nanoemulsion for combating S. aureus wound infection. J Mater Res Technol. 2020; 9(6):12804–12817.
  • Farahani H, Barati A, Arjomandzadegan M, et al. Nanofibrous cellulose acetate/gelatin wound dressing endowed with antibacterial and healing efficacy using nanoemulsion of Zataria multiflora. Int J Biol Macromol. 2020;162:762–773.
  • Jiang T, Liao W, Charcosset C. Recent advances in encapsulation of curcumin in nanoemulsions: a review of encapsulation technologies, bioaccessibility and applications. Food Res Int. 2020;132:109035.
  • Cheng RY, Liu LL, Xiang Y, et al. Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials. 2020;232:119706.
  • Mengoni T, Adrian M, Pereira S, et al. A Chitosan-based liposome formulation enhances the in vitro wound healing efficacy of substance P neuropeptide. Pharmaceutics. 2017;9(4):56.
  • Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol. 2015;6:219–219.
  • El-Gizawy SA, Nouh A, Saber S, et al. Deferoxamine-loaded transfersomes accelerates healing of pressure ulcers in streptozotocin-induced diabetic rats. J Drug Delivery Sci Technol. 2020; 58:101732.
  • Garcia-Orue I, Gainza G, Girbau C, et al. LL37 loaded nanostructured lipid carriers (NLC): a new strategy for the topical treatment of chronic wounds. Eur J Pharm Biopharm. 2016;108:310–316.
  • El-Salamouni NS, Gowayed MA, Seiffein NL, et al. Valsartan solid lipid nanoparticles integrated hydrogel: a challenging repurposed use in the treatment of diabetic foot ulcer, in-vitro/in-vivo experimental study. Int J Pharm. 2021;592:120091.
  • Goyal R, Macri LK, Kaplan HM, et al. Nanoparticles and nanofibers for topical drug delivery. J Control Release. 2016; 240:77–92.
  • Miguel SP, Sequeira RS, Moreira AF, et al. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur J Pharm Biopharm. 2019;139:1–22.
  • Wang S, Yan C, Zhang X, et al. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomater Sci. 2018;6(10):2757–2772.
  • Nethi SK, Das S, Patra CR, et al. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater Sci. 2019; 7(7):2652–2674.
  • Matougui N, Boge L, Groo AC, et al. Lipid-based nanoformulations for peptide delivery. Int J Pharm. 2016;502(1–2):80–97.
  • Shanmugapriya K, Kim H, Kang HW. A new alternative insight of nanoemulsion conjugated with κ-carrageenan for wound healing study in diabetic mice: in vitro and in vivo evaluation. Eur J Pharm Sci. 2019; 133:236–250.
  • Mostafa DM, Abd El-Alim SH, Asfour MH, et al. Transdermal nanoemulsions of Foeniculum vulgare mill. Essential oil: preparation, characterization and evaluation of antidiabetic potential. J Drug Delivery Sci Technol. 2015; 29:99–106.
  • Akrawi SH, Gorain B, Nair AB, et al. Development and optimization of naringenin-loaded chitosan-coated nanoemulsion for topical therapy in wound healing. Pharmaceutics. 2020;12(9):893.
  • Santalices I, Vázquez-Vázquez C, Santander-Ortega MJ, et al. A nanoemulsion/micelles mixed nanosystem for the oral administration of hydrophobically modified insulin. Drug Deliv Transl Res. 2021;11(2):524–545.
  • Hu X-B, Tang T-T, Li Y-J, et al. Phospholipid complex based nanoemulsion system for oral insulin delivery: preparation, in vitro, and in vivo evaluations. Int J Nanomed. 2019;14:3055–3067.
  • Bellefroid C, Lechanteur A, Evrard B, et al. Lipid gene nanocarriers for the treatment of skin diseases: current state-of-the-art. Eur J Pharm Biopharm. 2019;137:95–111.
  • Li QY, Fang H, Dang E, et al. The role of ceramides in skin homeostasis and inflammatory skin diseases. J Dermatol Sci. 2020;97(1):2–8.
  • Choi JU, Lee SW, Pangeni R, et al. Preparation and in vivo evaluation of cationic elastic liposomes comprising highly skin-permeable growth factors combined with hyaluronic acid for enhanced diabetic wound-healing therapy. Acta Biomater. 2017;57:197–215.
  • Leal EC, Carvalho E, Tellechea A, et al. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype. Am J Pathol. 2015;185(6):1638–1648.
  • Kant V, Kumar D, Kumar D, et al. Topical application of substance P promotes wound healing in streptozotocin-induced diabetic rats. Cytokine. 2015;73(1):144–155.
  • Randeria PS, Seeger MA, Wang X-Q, et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc Natl Acad Sci U S A. 2015;112(18):5573–5578.
  • Chen ZX, Li B, Liu T, et al. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur J Pharm Sci. 2017;99:240–245.
  • Kandregula B, Narisepalli S, Chitkara D, et al. Exploration of lipid-based nanocarriers as drug delivery systems in diabetic foot ulcer. Mol Pharmaceutics. 2022. DOI:10.1021/acs.molpharmaceut.1c00970.
  • Caddeo C, Manca ML, Peris JE, et al. Tocopherol-loaded transfersomes: in vitro antioxidant activity and efficacy in skin regeneration. Int J Pharm. 2018; 551(1–2):34–41.
  • Motawea MMM, Motawea A, El-Gawad A, et al. The impact of topical phenytoin loaded nanostructured lipid carriers in healing of neuropathic diabetic foot ulceration. Diabetologia. 2017;60:S464–S464.
  • Sun D, Guo S-Y, Yang L, et al. Silicone elastomer gel impregnated with 20(S)-protopanaxadiol-loaded nanostructured lipid carriers for ordered diabetic ulcer recovery. Acta Pharmacol Sin. 2020;41(1):119–128.
  • Abadir P, Hosseini S, Faghih M, et al. Topical reformulation of valsartan for treatment of chronic diabetic wounds. J Invest Dermatol. 2018; 138(2):434–443.
  • Cui SS, Sun X, Li K, et al. Polylactide nanofibers delivering doxycycline for chronic wound treatment. Mater Sci Eng C-Mater Biol Appl. 2019;104:109745.
  • Saghazadeh S, Rinoldi C, Schot M, et al. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev. 2018;127:138–166.
  • Jeckson TA, Neo YP, Sisinthy SP, et al. Delivery of therapeutics from layer-by-layer electrospun nanofiber matrix for wound healing: an update. J Pharm Sci. 2021;110(2):635–653.
  • Samadian H, Zamiri S, Ehterami A, et al. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies. Sci Rep. 2020;10(1):12.
  • Amiri N, Ajami S, Shahroodi A, et al. Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int J Biol Macromol. 2020;162:645–656.
  • Cam ME, Crabbe-Mann M, Alenezi H, et al. The comparision of glybenclamide and metformin-loaded bacterial cellulose/gelatin nanofibres produced by a portable electrohydrodynamic gun for diabetic wound healing. Eur Polym J. 2020;134:109844.
  • Cam ME, Ertas B, Alenezi H, et al. Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: an in vitro and in vivo evaluation study. Mater Sci Eng C-Mater Biol Appl. 2021;119(21)
  • Liu FG, Li XZ, Wang L, et al. Sesamol incorporated cellulose acetate-zein composite nanofiber membrane: an efficient strategy to accelerate diabetic wound healing. Int J Biol Macromol. 2020;149:627–638.
  • Lakshmanan R, Campbell J, Ukani G, et al. Evaluation of dermal tissue regeneration using resveratrol loaded fibrous matrix in a preclinical mouse model of full-thickness ischemic wound. Int J Pharm. 2019;558:177–186.
  • Perumal G, Pappuru S, Chakraborty D, et al. Synthesis and characterization of curcumin loaded PLA—hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater Sci Eng C Mater Biol Appl. 2017;76:1196–1204.
  • Yang B-Y, Hu C-H, Huang W-C, et al. Effects of bilayer nanofibrous scaffolds containing curcumin/lithospermi radix extract on wound healing in streptozotocin-induced diabetic rats. Polymers. 2019;11(11):1745.
  • Ranjbar-Mohammadi M, Rabbani S, Bahrami SH, et al. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater Sci Eng C Mater Biol Appl. 2016;69:1183–1191.
  • Chen S, Wang H, Su Y, et al. Mesenchymal stem cell-laden, personalized 3D scaffolds with controlled structure and fiber alignment promote diabetic wound healing. Acta Biomater. 2020 May;108:153–167.
  • Pham-Nguyen OV, Shin JU, Kim H, et al. Self-assembled cell sheets composed of mesenchymal stem cells and gelatin nanofibers for the treatment of full-thickness wounds. Biomater Sci. 2020;8(16):4535–4544. Aug.
  • Ahmad T, McGrath S, Sirafim C, et al. Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticles. Biomater Sci. 2021;9(5):1888.
  • Kalantari K, Mostafavi E, Afifi AM, et al. Wound dressings functionalized with silver nanoparticles: promises and pitfalls. Nanoscale. 2020;12(4):2268–2291.
  • Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm. 2019;559:23–36.
  • Sandri G, Miele D, Faccendini A, et al. Chitosan/glycosaminoglycan scaffolds: the role of silver nanoparticles to control microbial infections in wound healing. Polymers (Basel). 2019;11(7):1207.
  • Alvarado-Gomez E, Martínez-Castañon G, Sanchez-Sanchez R, et al. Evaluation of anti-biofilm and cytotoxic effect of a gel formulation with pluronic F-127 and silver nanoparticles as a potential treatment for skin wounds. Mater Sci Eng C Mater Biol Appl. 2018;92:621–630.
  • Kalirajan C, Palanisamy T. Bioengineered hybrid collagen scaffold tethered with silver-catechin nanocomposite modulates angiogenesis and TGF-β toward scarless healing in chronic deep second degree infected burns. Adv Healthc Mater. 2020;9(12):e2000247. Jun
  • Matter MT, Probst S, Läuchli S, et al. Uniting drug and delivery: metal oxide hybrid nanotherapeutics for skin wound care. Pharmaceutics. 2020;12(8):780.
  • Sener G, Hilton SA, Osmond MJ, et al. Injectable, self-healable zwitterionic cryogels with sustained microRNA – cerium oxide nanoparticle release promote accelerated wound healing. Acta Biomater. 2020; 101:262–272.
  • Zgheib C, Hilton SA, Dewberry LC, et al. Use of cerium oxide nanoparticles conjugated with microRNA-146a to correct the diabetic wound healing impairment. J Am Coll Surg. 2019; 228(1):107–115.
  • Niemiec SM, Louiselle AE, Hilton SA, et al. Nanosilk increases the strength of diabetic skin and delivers CNP-miR146a to improve wound healing. Front Immunol. 2020;11:590285.
  • Mishra PK, Mishra H, Ekielski A, et al. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017;22(12):1825–1834.
  • Ahmed R, Tariq M, Ali I, et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol. 2018; 120(Pt A):385–393.
  • Zhu Y, Wu J, Chen M, et al. Recent advances in the biotoxicity of metal oxide nanoparticles: impacts on plants, animals and microorganisms. Chemosphere. 2019;237:124403.
  • Khorasani MT, Joorabloo A, Adeli H, et al. Design and optimization of process parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials. Carbohydr Polym. 2019; 207:542–554.
  • Khan AUR, Huang K, Jinzhong Z, et al. Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles. J Mater Chem B. 2021;9(5):1452–1465.
  • Dzmitruk V, Apartsin E, Ihnatsyeu-Kachan A, et al. Dendrimers show promise for siRNA and microRNA therapeutics. Pharmaceutics. 2018;10(3):126.
  • Araújo RV, Santos SDS, Igne Ferreira E, et al. New advances in general biomedical applications of PAMAM dendrimers. Molecules. 2018; 23(11):2849.
  • Koppa Raghu P, Bansal KK, Thakor P, et al. Evolution of nanotechnology in delivering drugs to eyes, skin and wounds via topical route. Pharmaceuticals (Basel). 2020;13(8):167.
  • Li N, Yang L, Pan C, et al. Naturally-occurring bacterial cellulose-hyperbranched cationic polysaccharide derivative/MMP-9 siRNA composite dressing for wound healing enhancement in diabetic rats. Acta Biomater. 2020;102:298–314.
  • Jiang G, Liu S, Yu T, et al. PAMAM dendrimers with dual-conjugated vancomycin and Ag-nanoparticles do not induce bacterial resistance and kill vancomycin-resistant Staphylococci. Acta Biomater. 2021;123:230–243.
  • Singh A, Bhattacharya R, Shakeel A, et al. Hydrogel nanotubes with ice helices as exotic nanostructures for diabetic wound healing. Mater Horiz. 2019;6(2):274–284.
  • Wahid F, Zhao X-J, Jia S-R, et al. Nanocomposite hydrogels as multifunctional systems for biomedical applications: current state and perspectives. Compos Part B: Eng. 2020; 200:108208.
  • Forero-Doria O, Polo E, Marican A, et al. Supramolecular hydrogels based on cellulose for sustained release of therapeutic substances with antimicrobial and wound healing properties. Carbohydr Polym. 2020;242:116383.
  • Murugesan B, Pandiyan N, Kasinathan K, et al. Fabrication of heteroatom doped NFP-MWCNT and NFB-MWCNT nanocomposite from imidazolium ionic liquid functionalized MWCNT for antibiofilm and wound healing in Wistar rats: synthesis, characterization, in-vitro and in-vivo studies. Mater Sci Eng C Mater Biol Appl. 2020;111:110791.
  • Ravanbakhsh H, Bao G, Mongeau L. Carbon nanotubes promote cell migration in hydrogels. Sci Rep. 2020;10(1):2543.
  • Santos AC, Ferreira C, Veiga F, et al. Halloysite clay nanotubes for life sciences applications: from drug encapsulation to bioscaffold. Adv Colloid Interface Sci. 2018;257:58–70.
  • Pavliňáková V, Fohlerová Z, Pavliňák D, et al. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Mater Sci Eng C Mater Biol Appl. 2018; 91:94–102.
  • Sandri G, Aguzzi C, Rossi S, et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater. 2017;57:216–224.
  • Kouser S, Prabhu A, Sheik S, et al. Poly (caprolactone)/sodium-alginate-functionalized halloysite clay nanotube nanocomposites: potent biocompatible materials for wound healing applications. Int J Pharm. 2021; 607:121048.
  • Wang M, Wang CG, Chen M, et al. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano. 2019;13(9):10279–10293. Sep.
  • Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing. Biomaterials. 2020;249:120020.
  • Zhang YY, Zhang P, Gao XQ, et al. Preparation of exosomes encapsulated nanohydrogel for accelerating wound healing of diabetic rats by promoting angiogenesis. Mater Sci Eng C-Mater Biol Appl. 2021;120:111671.
  • Wang C, Wang M, Xu T, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. 2019;9(1):65–76.
  • Wang K, Dong R, Tang J, et al. Exosomes laden self-healing injectable hydrogel enhances diabetic wound healing via regulating macrophage polarization to accelerate angiogenesis. Chem Eng J. 2022;430:132664.
  • Shi Q, Qian Z, Liu D, et al. GMSC-Derived exosomes combined with a Chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front Physiol. 2017;8:904.
  • Almeida L, Felzenszwalb I, Marques M, et al. Nanotechnology activities: environmental protection regulatory issues data. Heliyon. 2020; 6(10):e05303.
  • Rajendran NK, Kumar SSD, Houreld NN, et al. A review on nanoparticle based treatment for wound healing. J Drug Delivery Sci Technol. 2018; 44:421–430.
  • Ashtikar M, Wacker MG. Nanopharmaceuticals for wound healing – lost in translation? Adv Drug Deliv Rev. 2018; 129:194–218.
  • Farjadian F, Ghasemi A, Gohari O, et al. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond). 2019;14(1):93–126.
  • Lammers T, Ferrari M. The success of nanomedicine. Nano Today. 2020;31:100853.
  • Germain M, Caputo F, Metcalfe S, et al. Delivering the power of nanomedicine to patients today. J Control Release. 2020; 326:164–171.
  • Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–2387.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.