212
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Lymphatic targeting for therapeutic application using nanoparticulate systems

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1017-1033 | Received 06 Apr 2022, Accepted 17 Jun 2022, Published online: 04 Jul 2022

References

  • Ke X, Howard GP, Tang H, et al. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev. 2019;151–152:72–93.
  • Murfee WL, Breslin JW. Linking lymphatic function to disease. J Physiol. 2020;598(15):3065–3066.
  • Shukla R, Handa M, Pardhi VP. Introduction to pharmaceutical product development. In: Pharmaceutical drug product development and process optimization. New York: Apple Academic Press; 2020. p. 1–32.
  • Jiang H, Wang Q, Sun X. Lymph node targeting strategies to improve vaccination efficacy. J Control Release. 2017;267:47–56.
  • Abellan-Pose R, Csaba N, Jose Alonso M. Lymphatic targeting of nanosystems for anticancer drug therapy. Curr Pharm Des. 2016;22(9):1194–1209.
  • Abdallah M, Müllertz OO, Styles IK, et al. Lymphatic targeting by albumin-hitchhiking: applications and optimisation. J Control Release. 2020;327:117–128.
  • Zhang F, Zarkada G, Yi S, et al. Lymphatic endothelial cell junctions: molecular regulation in physiology and diseases. Front Physiol. 2020;11:509.
  • Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour-targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14(11):781–803.
  • Sheikh A, Md S, Kesharwani P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Pharmacother. 2022;146:112530. https://linkinghub.elsevier.com/retrieve/pii/S0753332221013172.
  • Singh V, Md S, Alhakamy NA, et al. Taxanes loaded polymersomes as an emerging polymeric nanocarrier for cancer therapy. Eur Polym J. 2022;162:110883.
  • Choudhury H, Gorain B, Pandey M, et al. Surface engineering of nanoparticles for imparting multifunctionality. In: Nanoparticle therapeutics. UK: Academic Press; 2022. p. 181–210.
  • Madamsetty VS, Tavakol S, Moghassemi S, et al. Chitosan: a versatile bio-platform for breast cancer theranostics. J Control Release. 2022;341:733–752. https://pubmed.ncbi.nlm.nih.gov/34906606/.
  • Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release. 2021;340:221–242. https://linkinghub.elsevier.com/retrieve/pii/S0168365921005824.
  • Mishra P, Handa M, Ujjwal RR, et al. Potential of nanoparticulate based delivery systems for effective management of alopecia. Colloids Surf B Biointerfaces. 2021;208:112050. https://linkinghub.elsevier.com/retrieve/pii/S092777652100494X.
  • Chadar R, Afzal O, Alqahtani SM, et al. Carbon nanotubes as an emerging nanocarrier for the delivery of doxorubicin for improved chemotherapy. Colloids Surf B Biointerfaces. 2021;208:112044. https://linkinghub.elsevier.com/retrieve/pii/S0927776521004884.
  • Gorantla S, Wadhwa G, Jain S, et al. Recent advances in nanocarriers for nutrient delivery. Drug Deliv Transl Res. 2021;29:1–26. https://pubmed.ncbi.nlm.nih.gov/34845678/.
  • Kumar Bandaru R, Rout SR, Kenguva G, et al. Recent advances in pharmaceutical cocrystals: from bench to market. Front Pharmacol. 2021;12:1–16. https://pubmed.ncbi.nlm.nih.gov/34858194/.
  • Nitheesh Y, Pradhan R, Hejmady S, et al. Surface engineered nanocarriers for the management of breast cancer. Mater Sci Eng C Mater Biol Appl. 2021;130:112441.
  • Srivastava S, Mahor A, Singh G, et al. Formulation development, in vitro and in vivo evaluation of topical hydrogel formulation of econazole nitrate-loaded β-cyclodextrin nanosponges. J Pharm Sci. 2021;110(11):3702–3714. https://linkinghub.elsevier.com/retrieve/pii/S0022354921003646.
  • Singh V, Kesharwani P. Recent advances in microneedles-based drug delivery device in the diagnosis and treatment of cancer. J Control Release. 2021;338:394–409. https://linkinghub.elsevier.com/retrieve/pii/S0168365921004685.
  • Sheikh A, Kesharwani P. An insight into aptamer engineered dendrimer for cancer therapy. Eur Polym J. 2021;159:110746. https://linkinghub.elsevier.com/retrieve/pii/S0014305721004808.
  • Singh A, Handa M, Ruwali M, et al. Nanocarrier mediated autophagy: an emerging trend for cancer therapy. Process Biochem. 2021;109:198–206. https://linkinghub.elsevier.com/retrieve/pii/S1359511321002233.
  • Kaur H, Kesharwani P. Advanced nanomedicine approaches applied for treatment of skin carcinoma. J Control Release. 2021;337:589–611. https://linkinghub.elsevier.com/retrieve/pii/S0168365921004028.
  • Singh V, Sahebkar A, Kesharwani P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur Polym J. 2021;158:110683. https://linkinghub.elsevier.com/retrieve/pii/S0014305721004171.
  • Chadar R, Afsana, Kesharwani P. Nanotechnology-based siRNA delivery strategies for treatment of triple negative breast cancer. Int J Pharm. 2021;605:120835. https://linkinghub.elsevier.com/retrieve/pii/S0378517321006402.
  • Feng X, Xu W, Li Z, et al. Immunomodulatory nanosystems. Adv Sci (Weinh). 2019;6(17):1900101.
  • Bouta EM, Bell RD, Rahimi H, et al. Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis. Nat Rev Rheumatol. 2018;14(2):94–106.
  • Singh A, Vaishagya K, K. Verma R, et al. Temperature/pH-triggered PNIPAM-based smart nanogel system loaded with anastrozole delivery for application in cancer chemotherapy. AAPS PharmSciTech. 2019;20(5):1–14. 10.1208/s12249-019-1410-3.
  • Luo G, Yu X, Jin C, et al. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int J Pharm. 2010;385(1–2):150–156.
  • Charman WN, Stella VJ. Lymphatic transport of drugs. In: Lymphatic transport of drugs. Boca Raton: CRC Press; 2019.
  • Zhang J, Lin Y, Lin Z, et al. Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Adv Sci. 2022;9(5):2103444.
  • Patel P, Patel M. Enhanced oral bioavailability of nintedanib esylate with nanostructured lipid carriers by lymphatic targeting: in vitro, cell line and in vivo evaluation. Eur J Pharm Sci. 2021;159:105715.
  • Martin JT, Hartwell BL, Kumarapperuma SC, et al. Combined PET and whole-tissue imaging of lymphatic-targeting vaccines in non-human primates. Biomaterials. 2021;275:120868.
  • Pandya P, Giram P, Bhole RP, et al. Nanocarriers based oral lymphatic drug targeting: strategic bioavailability enhancement approaches. J Drug Deliv Sci Technol. 2021;64:102585.
  • Rizk SA, Elsheikh MA, Elnaggar YS, et al. Novel bioemulsomes for baicalin oral lymphatic targeting: development, optimization and pharmacokinetics. Nanomedicine (Lond). 2021;16(22):1983–1998.
  • Achen MG, Stacker SA. Molecular control of lymphatic metastasis. Ann N Y Acad Sci. 2008;1131(1):225–234.
  • Kaur CD, Nahar M, Jain NK. Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target. 2008;16(10):798–805.
  • Kim J, Archer PA, Thomas SN. Innovations in lymph node targeting nanocarriers. Semin Immunol. 2021;56:101534.
  • Elz AS, Trevaskis NL, Porter CJ, et al. Smart design approaches for orally administered lipophilic prodrugs to promote lymphatic transport. J Control Release. 2022;341:676–701.
  • Han S, Mei L, Quach T, et al. Lipophilic conjugates of drugs: a tool to improve drug pharmacokinetic and therapeutic profiles. Pharm Res. 2021;38(9):1497–1518.
  • Mattheolabakis G, Milane L, Singh A, et al. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target. 2015;23(7–8):605–618.
  • Yan Z, Wang F, Wen Z, et al. LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J Control Release. 2012;157(1):118–125.
  • Coppi G, Iannuccelli V. Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system. Int J Pharm. 2009;367(1–2):127–132.
  • Sinha R, Kim GJ, Nie S, et al. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5(8):1909–1917.
  • Ding Y, Li Z, Jaklenec A, et al. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev. 2021;179:113914.
  • Derlin T, Schultze-Florey C, Werner RA, et al. 18F-FDG PET/CT of off-target lymphoid organs in CD19-targeting chimeric antigen receptor T-cell therapy for relapsed or refractory diffuse large B-cell lymphoma. Ann Nucl Med. 2021;35(1):132–138.
  • Saraf S, Ghosh A, Kaur CD, et al. Novel modified nanosystem based lymphatic targeting. Res J Nanosci Nanotechnol. 2011;1(2):60–74.
  • Moghimi SM. Nanoparticle engineering for the lymphatic system and lymph node targeting. RSC Nanosci Nanotechnol. 2010;10:81–97.
  • Wang P, Zhang L, Peng H, et al. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater Sci Eng C. 2013;33(8):4802–4808.
  • Gadhave DG, Tagalpallewar AA, Kokare CR. Agranulocytosis-protective olanzapine-loaded nanostructured lipid carriers engineered for CNS delivery: optimization and hematological toxicity studies. AAPS PharmSciTech. 2019;20(1):22.
  • Vishwakarma N, Jain A, Sharma R, et al. Lipid-based nanocarriers for lymphatic transportation. AAPS PharmSciTech. 2019;20(2):1–3.
  • Gurumukhi VC, Bari SB. Quality by design (QbD)–based fabrication of atazanavir-loaded nanostructured lipid carriers for lymph targeting: bioavailability enhancement using chylomicron flow block model and toxicity studies. Drug Deliv Transl Res. 2021;12(5):1–23.
  • Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspective. Int J Nanomed. 2007;2(3):289–300.
  • Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–1272.
  • Song T, Xia Y, Du Y, et al. Engineering the deformability of albumin-stabilized emulsions for lymph-node vaccine delivery. Adv Mater. 2021;33(26):2100106.
  • Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Delivery Rev. 2007;59(6):478–490.
  • Dwivedi P, Khatik R, Khandelwal K, et al. Preparation and characterization of solid lipid nanoparticles of antimalarial drug arteether for oral administration. J Biomater Tissue Eng. 2014;4(2):133–137.
  • Truzzi E, Bongio C, Sacchetti F, et al. Self-assembled lipid nanoparticles for oral delivery of Heparin-coated iron oxide nanoparticles for theranostic purposes. Mol A J Synth Chem Nat Prod Chem. 2017;22(6):963–980.
  • Cho H-J, Park JW, Yoon I-S, et al. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int J Nanomed. 2014;9(1):495–504.
  • Harivardhan Reddy L, Sharma RK, Chuttani K, et al. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J Control Release. 2005;105(3):185–198.
  • Paliwal R, Rai S, Vaidya B, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine. 2009;5(2):184–191.
  • Zara GP, Bargoni A, Cavalli R, et al. Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. J Pharm Sci. 2002;91(5):1324–1333.
  • Videira M, Almeida AJ, Fabra A. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine. 2012;8(7):1208–1215.
  • Garg NK, Sharma G, Singh B, et al. Quality by design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): an improved dermatokinetic profile for inflammatory disorder(s). Int J Pharm. 2017;517(1–2):413–431.
  • Tripathi P, Verma A, Dwivedi P, et al. Formulation and characterization of amphotericin B loaded nanostructured lipid carriers using microfluidizer. J Biomater Tissue Eng. 2014;4(3):194–197.
  • Zhuang CY, Li N, Wang M, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394(1–2):179–185.
  • Zhou L, Chen Y, Zhang Z, et al. Preparation of tripterine nanostructured lipid carriers and their absorption in rat intestine. Pharmazie. 2012;67(4):304–310.
  • Jawahar N, Hingarh PK, Radhakrishnan A, et al. Enhanced oral bioavailability of an antipsychotic drug through nanostructured lipid carriers. Int J Biol Macromol. 2018;110:269–275.
  • Khan S, Ganguli M, Aditya A, et al. Improved in vivo performance and immunomodulatory effect of novel omega-3 fatty acid based tacrolimus nanostructured lipid carrier. J Drug Deliv Sci Technol. 2019;52:138–149.
  • Chaudhary S, Garg T, Murthy RSR, et al. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J Drug Target. 2014;22(10):871–882.
  • Oussoren C, Storm G. Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev. 2001;50(1–2):143–156.
  • Ahn H, Park JH. Liposomal delivery systems for intestinal lymphatic drug transport. Biomater Res. 2016;20(1):1–6.
  • Basu MK. Liposomal delivery of antileishmanial agents. J Appl Res. 2005;5(1):221–236.
  • Ahmed KS, Hussein SA, Ali AH, et al. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications [internet]. J Drug Target. 2019;27(7):742–761. 10.1080/1061186X.2018.1527337.
  • Ling SS, Magosso E, Khan NA, et al. Enhanced oral bioavailability and intestinal lymphatic transport of a hydrophilic drug using liposomes. Drug Dev Ind Pharm. 2006;32(3):335–345.
  • Tiantian Y, Wenji Z, Mingshuang S, et al. Study on intralymphatic-targeted hyaluronic acid-modified nanoliposome: influence of formulation factors on the lymphatic targeting. Int J Pharm. 2014;471(1–2):245–257.
  • Feng L, Zhang L, Liu M, et al. Roles of dextrans on improving lymphatic drainage for liposomal drug delivery system. J Drug Target. 2010;18(3):168–178.
  • Yan Z, Zhan C, Wen Z, et al. LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics. Nanotechnology. 2011;22(41):415103.
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–651.
  • Handa M, Sharma A, Verma RK, et al. Polycaprolactone based nano-carrier for co-administration of moxifloxacin and rutin and its in-vitro evaluation for sepsis. J Drug Deliv Sci Technol. 2019.
  • Shukla R, Handa M, Lokesh SB, et al. Conclusion and future prospective of polymeric nanoparticles for cancer therapy. In: Polymeric nanoparticles as a promising tool for anti-cancer therapeutics. London: Academic Press; 2019. p. 389–408.
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.
  • Liu J, Wong HL, Moselhy J, et al. Targeting colloidal particulates to thoracic lymph nodes. Lung Cancer. 2006;51(3):377–386.
  • Nam HY, Min KH, Kim DE, et al. Mussel-inspired poly(L-DOPA)-templated mineralization for calcium phosphate-assembled intracellular nanocarriers. Colloids Surf B Biointerfaces. 2017;157:215–222.
  • Li Y, Jin M, Shao S, et al. Small-sized polymeric micelles incorporating docetaxel suppress distant metastases in the clinically-relevant 4T1 mouse breast cancer model. BMC Cancer. 2014;14(1):329.
  • Ryan GM, McLeod VM, Mehta D, et al. Lymphatic transport and lymph node targeting of methotrexate-conjugated PEGylated dendrimers are enhanced by reducing the length of the drug linker or masking interactions with the injection site. Nanomedicine. 2017;13(8):2485–2494.
  • Nishimoto Y, Nagashima S, Nakajima K, et al. Carboxyl-, sulfonyl-, and phosphate-terminal dendrimers as a nanoplatform with lymph node targeting. Int J Pharm. 2020;576:119021.
  • Nishimoto Y, Nishio M, Nagashima S, et al. Association of hydrophobic carboxyl-terminal dendrimers with lymph node-resident lymphocytes. Polym. 2020;12(7):1474.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18.
  • Wu W, Wang Y, Que L. Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur J Pharm Biopharm. 2006;63(3):288–294.
  • Zhang P, Liu Y, Feng N, et al. Preparation and evaluation of self-microemulsifying drug delivery system of oridonin. Int J Pharm. 2008;355(1–2):269–276. http://www.ncbi.nlm.nih.gov/pubmed/18242895.
  • Shen H, Zhong M. Preparation and evaluation of self-microemulsifying drug delivery systems (SMEDDS) containing atorvastatin. J Pharm Pharmacol. 2006;58(9):1183–1191. http://www.ncbi.nlm.nih.gov/pubmed/16945176.
  • Cui J, Yu B, Zhao Y, et al. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm. 2009;371(1–2):148–155.
  • Pokale R, Bandivadekar M. Self Micro-Emulsifying drug delivery system for lymphatic uptake of darunavir. J Drug Discov Dev Deliv. 2016;3(2):1–7.
  • Singh G, Pai RS. Trans-resveratrol self-nano-emulsifying drug delivery system (SNEDDS) with enhanced bioavailability potential: optimization, pharmacokinetics and in situ single pass intestinal perfusion (SPIP) studies. Drug Deliv. 2015;22(4):522–530.
  • Garg B, Katare OP, Beg S, et al. Systematic development of solid self-nanoemulsifying oily formulations (S-SNEOFs) for enhancing the oral bioavailability and intestinal lymphatic uptake of lopinavir. Colloids Surf B Biointerfaces. 2016;141:611–622.
  • Dou YX, Zhou JT, Wang TT, et al. Self-nanoemulsifying drug delivery system of bruceine D: a new approach for anti-ulcerative colitis. Int J Nanomed. 2018;13:5887–5907.
  • Singh SK, Banala VT, Gupta GK, et al. Development of docetaxel nanocapsules for improving in vitro cytotoxicity and cellular uptake in MCF-7 cells. Drug Dev Ind Pharm. 2015;41(11):1759–1768.
  • Pardhi VP, Verma T, Flora SJS, et al. Nanocrystals: an overview of fabrication, characterization and therapeutic applications in drug delivery. Curr Pharm Des. 2019;24(43):5129–5146.
  • Huynh NT, Passirani C, Saulnier P, et al. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009;379(2):201–209.
  • Abellan-Pose R, Teijeiro-Valiño C, Santander-Ortega MJ, et al. Polyaminoacid nanocapsules for drug delivery to the lymphatic system: effect of the particle size. Int J Pharm. 2016;509(1–2):107–117.
  • Shukla R, Kumar J, Dwivedi P, et al. Microparticles of diethylcarbamazine citrate for the treatment of lymphatic filariasis. Asian J Chem. 2013;25(Supp):S302.
  • Yang D, Yang F, Hu J, et al. Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem Commun. 2009;29:4447–4449.
  • Goel S, Mishra P. Thymoquinone loaded mesoporous silica nanoparticles retard cell invasion and enhance in vitro cytotoxicity due to ROS mediated apoptosis in HeLa and MCF-7 cell lines. Mater Sci Eng C Mater Biol Appl. 2019;104:109881–109891.
  • Dong X, Sun Z, Wang X, et al. Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC. Drug Deliv. 2017;24(1):143–151.
  • Shukla R, Gupta J, Shukla P, et al. Chitosan coated alginate micro particles for the oral delivery of antifilarial drugs and combinations for intervention in Brugia malayi induced lymphatic filariasis. RSC Adv. 2015;5(85):69047–69056.
  • Singh I, Swami R, Khan W, et al. Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. In Handbook of immunological properties of engineered nanomaterials. 2nd ed. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2016. p. 363–398.
  • Muranishi S. Drug targeting towards the lymphatics. Adv Drug Res. London: Academic Press; 1991. p. 1–38.
  • Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol. 2010;624:25–37.
  • Jain V, Singodia D, Gupta GK, et al. Ciprofloxacin surf-plexes in Sub-micron emulsions: a novel approach to improve payload efficiency and antimicrobial efficacy. Int J Pharm. 2011;409(1–2):237–244.
  • Gershenwald JE, Fidler IJ. Cancer: targeting lymphatic metastasis. Science. 2002;296(5574):1811–1812.
  • Khan AA, Mudassir J, Mohtar N, et al. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomed. 2013;8:2733–2744.
  • Karaman S, Detmar M. Mechanisms of lymphatic metastasis. J Clin Invest. 2014;124(3):922–928.
  • Karajgi JS, Vyas SP. A lymphotropic colloidal carrier system for diethylcarbamazine: preparation and performance evaluation. J Microencapsul. 1994;11(5):539–545.
  • Shukla R, Mourya A, Handa M, et al. Role of nanomedicines in neglected tropical diseases. In: Nanopharmaceutical advanced delivery systems. USA: Scrivener Publishing LLC; 2021. p. 407–446.
  • Hoerauf A. Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Curr Opin Infect Dis. 2008;21(6):673–681.
  • Taylor MJ, Hoerauf A, Bockarie M. Lymphatic filariasis and onchocerciasis. Lancet. 2010;376(9747):1175–1185.
  • Bockarie MJ, Taylor MJ, Gyapong JO. Current practices in the management of lymphatic filariasis. Expert Rev Anti Infect Ther. 2009;7(5):595–605.
  • Mallipeddi R, Rohan LC. Progress in antiretroviral drug delivery using nanotechnology. Int J Nanomed. 2010;5:533–547.
  • Ando-Matsuoka R, Ando H, Lila AS, et al. Ip-injected cationic liposomes are retained and accumulate in peritoneally disseminated tumors. J Control Release. 2022;341:524–532.
  • Varma LT, Singh N, Gorain B, et al. Recent advances in self-assembled nanoparticles for drug delivery. Curr Drug Deliv. 2020;17(4):279–291.
  • Khan MI, Hossain MI, Hossain MK, et al. Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Appl Bio Mater. 2022;5(3):971–1012.
  • Hossain MK, Khan MI, El-Denglawey A. A review on biomedical applications, prospects, and challenges of rare earth oxides. Appl Mater Today. 2021;24:101104.
  • Anik MI, Hossain MK, Hossain I, et al. Recent progress of magnetic nanoparticles in biomedical applications: a review. Nano Sel. 2021;2(6):1146–1186.
  • Hossen S, Hossain MK, Basher MK, et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1–8.
  • Kobayashi H, Kawamoto S, Choyke PL, et al. Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn Reson Med. 2003;50(4):758–766.
  • Olmeda D, Cerezo-Wallis D, Castellano-Sanz E, et al. Physiological models for in vivo imaging and targeting the lymphatic system: nanoparticles and extracellular vesicles. Adv Drug Deliv Rev. 2021;175:113833.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.