414
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer

, , , , , & show all
Pages 1055-1075 | Received 09 May 2022, Accepted 21 Jun 2022, Published online: 03 Jul 2022

References

  • World Health Organization (WHO). Global Health Estimates 2020: deaths by cause, age, sex, by country and by region, 2000–2019 [Internet]. World Health Organization; 2020. [cited 2021 Aug 30]. Available from: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates.
  • Łukasiewicz S, Czeczelewski M, Forma A, et al. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers. 2021;13(17):4287.
  • Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300.
  • Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34.
  • Senapati S, Mahanta AK, Kumar S, et al. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3:7.
  • Mansoori B, Mohammadi A, Davudian S, et al. The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull. 2017;7(3):339–348.
  • Halder J, Pradhan D, Kar B, et al. Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. Nanomedicine. 2022;40:102494.
  • Jin Y-H, Hua Q-F, Zheng J-J, et al. Diagnostic value of ER, PR, FR and HER-2-Targeted molecular probes for magnetic resonance imaging in patients with breast cancer. Cell Physiol Biochem. 2018;49(1):271–281.
  • Jahan S, Karim M, Chowdhury EH. Nanoparticles targeting receptors on breast cancer for efficient delivery of chemotherapeutics. Biomedicines. 2021;9(2):114.
  • Singh S, Singh S, Lillard Jr JW, et al. Drug delivery approaches for breast cancer. Int J Nanomedicine. 2017;12:6205–6218.
  • Prabhakar A, Banerjee R. Nanobubble liposome complexes for diagnostic imaging and ultrasound-triggered drug delivery in cancers: a theranostic approach. ACS Omega. 2019;4(13):15567–15580.
  • Ağardan NBM, Değim Z, Yılmaz Ş, et al. Tamoxifen/raloxifene loaded liposomes for oral treatment of breast cancer. J Drug Delivery Sci Technol. 2020;57:101612.
  • Sharma AK, Gothwal A, Kesharwani P, et al. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today. 2017;22(2):314–326.
  • Chittasupho C, Anuchapreeda S, Sarisuta N. CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. Eur J Pharm Biopharm. 2017;119:310–321.
  • Mahalunkar S, Yadav AS, Gorain M, et al. Functional design of pH-responsive folate-targeted polymer-coated gold nanoparticles for drug delivery and in vivo therapy in breast cancer. Int J Nanomedicine. 2019;14:8285–8302.
  • Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Target. 2018;26(8):617–632.
  • Albarqi HA, Wong LH, Schumann C, et al. Biocompatible nanoclusters with high heating efficiency for systemically delivered magnetic hyperthermia. ACS Nano. 2019;13(6):6383–6395.
  • Nosrati H, Salehiabar M, Fridoni M, et al. New insight about biocompatibility and biodegradability of iron oxide magnetic nanoparticles: stereological and in vivo MRI monitor. Sci Rep. 2019;9(1):7173.
  • Mahmoudi M, Sant S, Wang B, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63(1–2):24–46.
  • Alarifi S, Ali D, Alkahtani S, et al. Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol Trace Elem Res. 2014;159(1–3):416–424.
  • Pinder SE, Ellis IO. The diagnosis and management of pre-invasive breast disease: Ductal carcinoma in situ (DCIS) and atypical ductal hyperplasia (ADH) – current definitions and classification. Breast Cancer Res. 2003;5(5):254–257.
  • Guray M, Sahin AA. Benign breast diseases: classification, diagnosis, and management. Oncologist. 2006;11(5):435–449.
  • Shah R, Rosso K, Nathanson SD. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol. 2014;5(3):283–298.
  • Beral V, Banks E, Reeves G, et al. Use of HRT and the subsequent risk of cancer. J Epidemiol Biostat. 1999;4(3):191–210.
  • Cancer.Net. Hereditary Breast and Ovarian Cancer [Internet]. ASCO/knowledge conquers cancer; 2020. [cited 2021 Aug 30]. Available from: https://www.cancer.net/cancer-types/hereditary-breast-and-ovarian-cancer.
  • Rivlin N, Brosh R, Oren M, et al. Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis. Genes Cancer. 2011;2(4):466–474.
  • Ling G, Ahmadian A, Persson Å, et al. PATCHED and p53 gene alterations in sporadic and hereditary basal cell cancer. Oncogene. 2001;20(53):7770–7778.
  • Lima ZS, Ghadamzadeh M, Arashloo FT, et al. Recent advances of therapeutic targets based on the molecular signature in breast cancer: genetic mutations and implications for current treatment paradigms. J Hematol Oncol. 2019;12(1):38.
  • Bange J, Zwick E, Ullrich A. Molecular targets for breast cancer therapy and prevention. Nat Med. 2001;7(5):548–552.
  • Wang M, Chen L, Xiong Y-Q, et al. Iron oxide magnetic nanoparticles combined with actein suppress non-small-cell lung cancer growth in a p53-dependent manner. Int J Nanomed. 2017;12:7627–7651.
  • Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15(4):1126–1132.
  • Adams JM, Cory S. The bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26(9):1324–1337.
  • Kwei KA, Kung Y, Salari K, et al. Genomic instability in breast cancer: pathogenesis and clinical implications. Mol Oncol. 2010;4(3):255–266.
  • Klein CA, Schmidt-Kittler O, Schardt JA, et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U S A. 1999;96(8):4494–4499.
  • Martínez-Limón A, Joaquin M, Caballero M, et al. The p38 pathway: from biology to cancer therapy. Int J Mol Sci. 2020;21(6):1913.
  • Benhar M, Engelberg D, Levitzki A. ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep. 2002;3(5):420–425.
  • Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18.
  • Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008;27(48):6245–6251.
  • Asik E, Akpinar Y, Caner A, et al. EF2-kinase targeted cobalt-ferrite siRNA-nanotherapy suppresses BRCA1 -mutated breast cancer. Nanomedicine (Lond). 2019;14(17):2315–2338.
  • Lunov O, Syrovets T, Büchele B, et al. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials. 2010;31(19):5063–5071.
  • Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell. 2005;7(6):513–520.
  • Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18(1):59.
  • Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106.
  • Wang S, El-Deiry WS. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene. 2003;22(53):8628–8633.
  • Wei W, Xu C, Wu H. Magnetic iron oxide nanoparticles mediated gene therapy for breast cancer — an in vitro study. J Huazhong Univ Sci Technol. 2006;26(6):728–730.
  • Liu S, Cong Y, Wang D, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2014;2(1):78–91.
  • Soleymani M, Velashjerdi M, Shaterabadi Z, et al. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Carbohydr Polym. 2020;237:116130.
  • Alric C, Hervé-Aubert K, Aubrey N, et al. Targeting HER2-breast tumors with scFv-decorated bimodal nanoprobes. J Nanobiotechnol. 2018;16(1):18.
  • Lee E, McKean-Cowdin R, Ma H, et al. Characteristics of triple-negative breast cancer in patients with a BRCA1 mutation: results from a population-based study of young women. J Clin Oncol. 2011;29(33):4373–4380.
  • Xu C, Feng Q, Yang H, et al. A light-triggered mesenchymal stem cell delivery system for photoacoustic imaging and chemo-photothermal therapy of triple negative breast cancer. Adv Sci (Weinh). 2018;5(10):1800382.
  • Guan X, Li J, Cai J, et al. Iron oxide-based enzyme mimic nanocomposite for dual-modality imaging guided chemical phototherapy and anti-tumor immunity against immune cold triple-negative breast cancer. Chem Eng J. 2021;425:130579.
  • De Talhouet S, Peron J, Vuilleumier A, et al. Clinical outcome of breast cancer in carriers of BRCA1 and BRCA2 mutations according to molecular subtypes. Sci Rep. 2020;10(1):7073.
  • Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Sig Transduct Target Ther. 2020;5(1):8.
  • Park JE, Dutta B, Tse SW, et al. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene. 2019;38(26):5158–5173.
  • Mulens-Arias V, Rojas JM, Barber DF. The use of iron oxide nanoparticles to reprogram macrophage responses and the immunological tumor microenvironment. Front Immunol. 2021;12:693709.
  • Ebrahimpour S, Esmaeili A, Dehghanian F, et al. Effects of quercetin-conjugated with superparamagnetic iron oxide nanoparticles on learning and memory improvement through targeting microRNAs/NF-κB pathway. Sci Rep. 2020;10(1):15070.
  • Jin R, Liu L, Zhu W, et al. Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like receptor-4 signaling. Biomaterials. 2019;203:23–30.
  • Almaki JH, Nasiri R, Idris A, et al. Synthesis, characterization and in vitro evaluation of exquisite targeting SPIONs–PEG–HER in HER2+ human breast cancer cells. Nanotechnology. 2016;27(10):105601.
  • Unal O, Akkoc Y, Kocak M, et al. Treatment of breast cancer with autophagy inhibitory microRNAs carried by AGO2-conjugated nanoparticles. J Nanobiotechnol. 2020;18(1):65.
  • Shan X-H, Wang P, Xiong F, et al. Detection of human breast cancer cells using a 2-deoxy-D-glucose-functionalized superparamagnetic iron oxide nanoparticles. Cancer Biomark. 2017;18(4):367–374.
  • Moradi Khaniabadi P, Shahbazi-Gahrouei D, Shah Abdul Majid A M, et al. In vitro study of SPIONs-C595 as molecular imaging probe for specific breast cancer (MCF-7) cells detection. Iran Biomed J. 2017;21(6):360–368.
  • Sun Y, Kim HS, Kang S, et al. Magnetic resonance Imaging-Guided drug delivery to breast cancer Stem-Like cells. Adv Healthcare Mater. 2018;7(21):1800266.
  • Dorjsuren B, Chaurasiya B, Ye Z, et al. Cetuximab-Coated Thermo-Sensitive liposomes loaded with magnetic nanoparticles and doxorubicin for targeted EGFR-Expressing breast cancer combined therapy. Int J Nanomed. 2020;15:8201–8215.
  • Cristofolini T, Dalmina M, Sierra JA, et al. Multifunctional hybrid nanoparticles as magnetic delivery systems for siRNA targeting the HER2 gene in breast cancer cells. Mater Sci Eng: C. 2020;109:110555.
  • Chinnappan R, Al Faraj A, Abdel Rahman AM, et al. Anti-VCAM-1 and anti-IL4Rα aptamer-conjugated super paramagnetic iron oxide nanoparticles for enhanced breast cancer diagnosis and therapy. Molecules. 2020;25(15):3437.
  • Aires A, Ocampo SM, Simões BM, et al. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology. 2016;27(6):065103.
  • Miller-Kleinhenz J, Guo X, Qian W, et al. Dual-targeting wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials. 2018;152:47–62.
  • Jeon M, Lin G, Stephen ZR, et al. Paclitaxel-loaded iron oxide nanoparticles for targeted breast cancer therapy. Adv Therap. 2019;2(12):1900081.
  • Salimi M, Sarkar S, Hashemi M, et al. Treatment of breast cancer-bearing BALB/c mice with magnetic hyperthermia using dendrimer functionalized iron-oxide nanoparticles. Nanomaterials. 2020;10(11):2310.
  • Shoji M, Sun A, Kisiel W, et al. Targeting tissue factor-expressing tumor angiogenesis and tumors with EF24 conjugated to factor VIIa. J Drug Target. 2008;16(3):185–197.
  • Iyer AK, Khaled G, Fang J, et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11(17–18):812–818.
  • Natfji AA, Ravishankar D, Osborn HMI, et al. Parameters affecting the enhanced permeability and retention effect: the need for patient selection. J Pharm Sci. 2017;106(11):3179–3187.
  • Huang J, Li Y, Orza A, et al. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv Funct Mater. 2016;26(22):3818–3836.
  • Nakamura Y, Mochida A, Choyke PL, et al. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27(10):2225–2238.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951.
  • Nel A, Ruoslahti E, Meng H. New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano. 2017;11(10):9567–9569.
  • Chauhan VP, Stylianopoulos T, Martin JD, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012;7(6):383–388.
  • Sykes EA, Chen J, Zheng G, et al. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano. 2014;8(6):5696–5706.
  • Wang L, Huang J, Chen H, et al. Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1 – T2 switchable magnetic resonance imaging contrast. ACS Nano. 2017;11(5):4582–4592.
  • Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9(9-10):1521–1532.
  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60(15):1615–1626.
  • Gu FX, Karnik R, Wang AZ, et al. Targeted nanoparticles for cancer therapy. Nano Today. 2007;2(3):14–21.
  • Singh A, Sahoo SK. Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today. 2014;19(4):474–481.
  • Kievit FM, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res. 2011;44(10):853–862.
  • Rosen JE, Chan L, Shieh D-B, et al. Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine. 2012;8(3):275–290.
  • Wang AZ, Gu F, Zhang L, et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther. 2008;8(8):1063–1070.
  • Haghighi AH, Faghih Z, Khorasani MT, et al. Antibody conjugated onto surface modified magnetic nanoparticles for separation of HER2+ breast cancer cells. J Magn Magn Mater. 2019;490:165479.
  • Dong S. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed. 2008;3(3):311.
  • Sultan Y. Development of smart materials using aptamer based bionanotechnologies [doctor of Philosophy]. [Internet] Ottawa: Carleton University; 2011. [cited 2022 Feb 2]. Available from: https://curve.carleton.ca/49feaa28-5818-4b3b-ac2c-c3816c48fe87.
  • Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.
  • Sekar TV, Dhanabalan A, Paulmurugan R. Imaging cellular receptors in breast cancers: an overview. Curr Pharm Biotechnol. 2011;12(4):508–527.
  • Leuschner C, Kumar CS, Hansel W, et al. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat. 2006;99(2):163–176.
  • Yang L, Cao Z, Sajja HK, et al. Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J Biomed Nanotechnol. 2008;4(4):439–449.
  • Lee S, Xie J, Chen X. Peptide-Based probes for targeted molecular imaging. Biochemistry. 2010;49(7):1364–1376.
  • Ruoslahti E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater. 2012;24(28):3747–3756.
  • Deng S, Zhang W, Zhang B, et al. Radiolabeled cyclic arginine-glycine-aspartic (RGD)-conjugated iron oxide nanoparticles as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. J Nanopart Res. 2015;17(1):19.
  • Xu L, Bai Q, Zhang X, et al. Folate-mediated chemotherapy and diagnostics: an updated review and outlook. J Control Release. 2017;252:73–82.
  • Ramzy L, Nasr M, Metwally AA, et al. Cancer nanotheranostics: a review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci. 2017;104:273–292.
  • Huang Y, Mao K, Zhang B, et al. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):763–771.
  • Tagde P, Kulkarni GT, Mishra DK, et al. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J Drug Delivery Sci Technol. 2020;56:101613.
  • Chan JMS, Cheung MSH, Gibbs RGJ, et al. MRI detection of endothelial cell inflammation using targeted superparamagnetic particles of iron oxide (SPIO). Clin Transl Med. 2017;6(1):1. [Internet]. [cited 2022 Feb 2]. Available from: https://onlinelibrary.wiley.com/10.1186/s40169-016-0134-1.
  • Zheng X-C, Ren W, Zhang S, et al. The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles. Int J Nanomedicine. 2018;13:1495–1504.
  • Landmark KJ, DiMaggio S, Ward J, et al. Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic Acid-Conjugated dendrimers. ACS Nano. 2008;2(4):773–783.
  • Bobo D, Robinson KJ, Islam J, et al. Nanoparticle-Based medicines: a review of FDA-Approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–2387.
  • Dadfar SM, Roemhild K, Drude NI, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302–325.
  • Tietze R, Lyer S, Dürr S, et al. Efficient drug-delivery using magnetic nanoparticles — biodistribution and therapeutic effects in tumour bearing rabbits. Nanomed Nanotechnol Biol Med. 2013;9(7):961–971.
  • Cardoso VF, Francesko A, Ribeiro C, et al. Advances in magnetic nanoparticles for biomedical applications. Adv Healthcare Mater. 2018;7(5):1700845.
  • Aghanejad A, Babamiri H, Adibkia K, et al. Mucin-1 aptamer-armed superparamagnetic iron oxide nanoparticles for targeted delivery of doxorubicin to breast cancer cells. Bioimpacts. 2018;8(2):117–127.
  • Hajizadeh F, Moghadaszadeh Ardebili S, Baghi Moornani M, et al. Silencing of HIF-1α/CD73 axis by siRNA-loaded TAT-chitosan-spion nanoparticles robustly blocks cancer cell progression. Eur J Pharmacol. 2020;882:173235.
  • Tousi MS, Sepehri H, Khoee S, et al. Evaluation of apoptotic effects of mPEG-b-PLGA coated iron oxide nanoparticles as a eupatorin carrier on DU-145 and LNCaP human prostate cancer cell lines. J Pharm Anal. 2021;11(1):108–121.
  • Hedayatnasab Z, Dabbagh A, Abnisa F, et al. Polycaprolactone-coated superparamagnetic iron oxide nanoparticles for in vitro magnetic hyperthermia therapy of cancer. Eur Polym J. 2020;133:109789.
  • Ghaznavi H, Hosseini-Nami S, Kamrava SK, et al. Folic acid conjugated PEG coated gold–iron oxide core–shell nanocomplex as a potential agent for targeted photothermal therapy of cancer. Artif Cells Nanomed Biotechnol. 2017;46(8):1594–604.
  • Woźniak E, Špírková M, Šlouf M, et al. Stabilization of aqueous dispersions of poly(methacrylic acid)-coated iron oxide nanoparticles by double hydrophilic block polyelectrolyte poly(ethylene oxide)- block -poly (N -methyl-2-vinylpyridinium iodide). Colloids Surf, A. 2017;514:32–37.
  • Mansoori B, Sandoghchian Shotorbani S, Baradaran B. RNA interference and its role in cancer therapy. Adv Pharm Bull. 2014;4(4):313.
  • Li K, Nejadnik H, Daldrup-Link HE. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discov Today. 2017;22(9):1421–1429.
  • Lin G, Zhu W, Yang L, et al. Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells. Biomaterials. 2014;35(35):9495–9507.
  • Ayyanaar S, Balachandran C, Bhaskar RC, et al. ROS-Responsive chitosan coated magnetic iron oxide nanoparticles as potential vehicles for targeted drug delivery in cancer therapy. Int J Nanomedicine. 2020;15:3333–3346.
  • Alkahtane AA, Alghamdi HA, Aljasham AT, et al. A possible theranostic approach of chitosan-coated iron oxide nanoparticles against human colorectal carcinoma (HCT-116) cell line. Saudi J Biol Sci. 2022;29(1):154–160.
  • Zuvin M, Kuruoglu E, Kaya VO, et al. Magnetofection of green fluorescent protein encoding DNA-bearing polyethyleneimine-coated superparamagnetic iron oxide nanoparticles to human breast cancer cells. ACS Omega. 2019;4(7):12366–12374.
  • Jia N, Wu H, Duan J, et al. Polyethyleneimine-coated iron oxide nanoparticles as a vehicle for the delivery of small interfering RNA to macrophages in vitro and in vivo. J Visual Exp. 2019;5(144):e58660.
  • Zheng M, Pan M, Zhang W, et al. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: current advances and perspectives. Bioact Mater. 2021;6(7):1878–1909.
  • Vermeulen LMP, Brans T, Samal SK, et al. Endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles. ACS Nano. 2018;12(3):2332–2345.
  • Nicholas NS, Apollonio B, Ramsay AG. Tumor microenvironment (TME)-driven immune suppression in B cell malignancy. Biochim Biophys Acta. 2016;1863(3):471–482.
  • Shi L, Gu H. Emerging nanoparticle strategies for modulating tumor-associated macrophage polarization. Biomolecules. 2021;11(12):1912.
  • Kievit FM, Stephen ZR, Veiseh O, et al. Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs. ACS Nano. 2012;6(3):2591–2601.
  • Jeon M, Halbert MV, Stephen ZR, et al. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives. Adv Mater. 2021;33(23):1906539.
  • Khalkhali M, Rostamizadeh K, Sadighian S, et al. The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: a comparative study. DARU J Pharm Sci. 2015;23:45.
  • Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev. 2012;41(7):2575–2589.
  • Starsich FHL, Eberhardt C, Keevend K, et al. Reduced magnetic coupling in ultrasmall iron oxide T 1 MRI contrast agents. ACS Appl Bio Mater. 2018;1(3):783–791.
  • Zhao N, Yan L, Xue J, et al. Degradable one-dimensional dextran-iron oxide nanohybrids for MRI-guided synergistic gene/photothermal/magnetolytic therapy. Nano Today. 2021;38:101118.
  • Yang R-M, Fu C, Fang J, et al. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy. Int J Nanomed. 2017;12:197–206.
  • Pandit P, Bhagat S, Rananaware P, et al. Iron oxide nanoparticle encapsulated; folic acid tethered dual metal organic framework-based nanocomposite for MRI and selective targeting of folate receptor expressing breast cancer cells. Microporous Mesoporous Mater. 2022;340:112008.
  • Dawar S, Singh N, Kanwar RK, et al. Multifunctional and multitargeted nanoparticles for drug delivery to overcome barriers of drug resistance in human cancers. Drug Discov Today. 2013;18(23–24):1292–1300.
  • Chaves N, Estrela-Lopis I, Böttner J, et al. Exploring cellular uptake of iron oxide nanoparticles associated with rhodium citrate in breast cancer cells. Int J Nanomed. 2017;12:5511–5523.
  • Ebrahimi E, Akbarzadeh A, Abbasi E, et al. Novel drug delivery system based on doxorubicin-encapsulated magnetic nanoparticles modified with PLGA-PEG 1000 copolymer. Artif Cells Nanomed Biotechnol. 2016;44(1):290–297.
  • Nigam S, Bahadur D. Doxorubicin-loaded dendritic-Fe3O4 supramolecular nanoparticles for magnetic drug targeting and tumor regression in spheroid murine melanoma model. Nanomed Nanotechnol Biol Med. 2018;14(3):759–768.
  • Aljarrah K, Mhaidat NM, Al-Akhras M-AH, et al. Magnetic nanoparticles sensitize MCF-7 breast cancer cells to doxorubicin-induced apoptosis. World J Surg Oncol. 2012;10:62.
  • Attari E, Nosrati H, Danafar H, et al. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier. J Biomed Mater Res A. 2019;107(11):2492–2500.
  • Panda J, Satapathy BS, Majumder S, et al. Engineered polymeric iron oxide nanoparticles as potential drug carrier for targeted delivery of docetaxel to breast cancer cells. J Magn Magn Mater. 2019;485:165–173.
  • García-García G, Fernández-Álvarez F, Cabeza L, et al. Gemcitabine-Loaded magnetically responsive poly(ε-caprolactone) nanoparticles against breast cancer. Polymers. 2020;12(12):2790.
  • Alomari M, Jermy BR, Ravinayagam V, et al. Cisplatin-functionalized three-dimensional magnetic SBA-16 for treating breast cancer cells (MCF-7). Artif Cells Nanomed Biotechnol. 2019;47(1):3079–3086.
  • Munnier E, Cohen-Jonathan S, Hervé K, et al. Doxorubicin delivered to MCF-7 cancer cells by superparamagnetic iron oxide nanoparticles: effects on subcellular distribution and cytotoxicity. J Nanopart Res. 2011;13(3):959–971.
  • Taherian A, Esfandiari N, Rouhani S. Breast cancer drug delivery by novel drug-loaded chitosan-coated magnetic nanoparticles. Cancer Nano. 2021;12(1):15.
  • Tarvirdipour S, Vasheghani-Farahani E, Soleimani M, et al. Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. Int J Pharm. 2016;501(1-2):331–341.
  • Parsian M, Unsoy G, Mutlu P, et al. Loading of gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur J Pharmacol. 2016;784:121–128.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71.
  • Ali EMM, Elashkar AA, El-Kassas HY, et al. Methotrexate loaded on magnetite iron nanoparticles coated with chitosan: Biosynthesis, characterization, and impact on human breast cancer MCF-7 cell line. Int J Biol Macromol. 2018;120(Pt A):1170–1180.
  • Morovati A, Ahmadian S, Jafary H. Cytotoxic effects and apoptosis induction of cisplatin-loaded iron oxide nanoparticles modified with chitosan in human breast cancer cells. Mol Biol Rep. 2019;46(5):5033–5039.
  • Rastegar R, Akbari Javar H, Khoobi M, et al. Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer. Artif Cells Nanomed Biotechnol. 2018;46(sup2):207–216.
  • Wu L, Chen L, Liu F, et al. Remotely controlled drug release based on iron oxide nanoparticles for specific therapy of cancer. Colloids Surf B Biointerfaces. 2017;152:440–448.
  • Tuntland T, Ethell B, Kosaka T, et al. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at novartis institute of biomedical research. Front Pharmacol. 2014;5:174. [Internet][cited 2022 Feb 2]. Available from: http://journal.frontiersin.org/article/10.3389/fphar.2014.00174/abstract.
  • Gadde S. Multi-drug delivery nanocarriers for combination therapy. Med Chem Commun. 2015;6(11):1916–1929.
  • Webber MJ, Appel EA, Meijer EW, et al. Supramolecular biomaterials. Nat Mater. 2016;15(1):13–26.
  • Benyettou F, Alhashimi M, O’Connor M, et al. Sequential delivery of doxorubicin and zoledronic acid to breast cancer cells by CB[7]-modified iron oxide nanoparticles. ACS Appl Mater Interfaces. 2017;9(46):40006–40016.
  • Nie Z, Vahdani Y, Cho WC, et al. 5-Fluorouracil-containing inorganic iron oxide/platinum nanozymes with dual drug delivery and enzyme-like activity for the treatment of breast cancer. Arabian J Chem. 2022;15(8):103966.
  • Khalvati B, Sheikhsaran F, Sharifzadeh S, et al. Delivery of plasmid encoding interleukin-12 gene into hepatocytes by conjugated polyethylenimine-based nanoparticles. Artif Cells Nanomed Biotechnol. 2017;45(5):1036–1044.
  • Sheikhsaran F, Sadeghpour H, Khalvati B, et al. Tetraiodothyroacetic acid-conjugated polyethylenimine for integrin receptor mediated delivery of the plasmid encoding IL-12 gene. Colloids Surf B Biointerfaces. 2017;150:426–436.
  • Razi Soofiyani S, Baradaran B, Lotfipour F, et al. Gene therapy, early promises, subsequent problems, and recent breakthroughs. Adv Pharm Bull. 2013; 3(2):249.
  • Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, et al. Strategies for targeting gene therapy in cancer cells with Tumor-Specific promoters. Front Oncol. 2020;10:605380.
  • Ramamoorth M. Non viral vectors in gene therapy- an overview. JCDR. 2015;9(1):GE01.
  • Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines (Basel). 2014;2(3):624–641.
  • Loh XJ, Lee T-C, Dou Q, et al. Utilising inorganic nanocarriers for gene delivery. Biomater Sci. 2016;4(1):70–86.
  • Majidi S, Zeinali Sehrig F, Samiei M, et al. Magnetic nanoparticles: applications in gene delivery and gene therapy. Artif Cells Nanomed Biotechnol. 2016;44(4):1186–1193.
  • Sajid MI, Moazzam M, Kato S, et al. Overcoming barriers for siRNA therapeutics: from bench to bedside. Pharmaceuticals. 2020;13(10):294.
  • Velloso FJ, Bianco AF, Farias JO, et al. The crossroads of breast cancer progression: insights into the modulation of major signaling pathways. Onco Targets Ther. 2017;10:5491–5524.
  • Feng Q, Liu Y, Huang J, et al. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci Rep. 2018;8(1):2082.
  • Bruniaux J, Djemaa SB, Hervé-Aubert K, et al. Stealth magnetic nanocarriers of siRNA as platform for breast cancer theranostics. Int J Pharm. 2017;532(2):660–668.
  • Huh MS, Lee S-Y, Park S, et al. Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J Control Release. 2010;144(2):134–143.
  • Singha K, Namgung R, Kim WJ. Polymers in Small-Interfering RNA delivery. Nucleic Acid Ther. 2011;21(3):133–147.
  • Nosrati H, Salehiabar M, Davaran S, et al. Methotrexate-conjugated L-lysine coated iron oxide magnetic nanoparticles for inhibition of MCF-7 breast cancer cells. Drug Dev Ind Pharm. 2018;44(6):886–894.
  • Hoang M-D, Lee H-J, Lee H-J, et al. Branched Polyethylenimine-Superparamagnetic iron oxide nanoparticles (bPEI-SPIONs) improve the immunogenicity of tumor antigens and enhance Th1 polarization of dendritic cells. J Immunol Res. 2015;2015:1–9.
  • Ben Djemaa S, David S, Hervé-Aubert K, et al. Formulation and in vitro evaluation of a siRNA delivery nanosystem decorated with gH625 peptide for triple negative breast cancer theranosis. Eur J Pharm Biopharm. 2018;131:99–108.
  • Zhang L, Li Y, Yu JC, et al. Assembly of polyethylenimine-functionalized iron oxide nanoparticles as agents for DNA transfection with magnetofection technique. J Mater Chem B. 2014;2(45):7936–7944.
  • Li H, Peng E, Zhao F, et al. Supramolecular surface functionalization of iron oxide nanoparticles with α-cyclodextrin-based cationic star polymer for magnetically-enhanced gene delivery. Pharmaceutics. 2021;13(11):1884.
  • Chong ZX, Yeap SK, Ho WY. Transfection types, methods and strategies: a technical review. PeerJ. 2021;9:e11165.
  • Cędrowska E, Pruszyński M, Gawęda W, et al. Trastuzumab conjugated superparamagnetic iron oxide nanoparticles labeled with 225Ac as a perspective tool for combined α-Radioimmunotherapy and magnetic hyperthermia of HER2-Positive breast cancer. Molecules. 2020;25(5):1025.
  • Li W-M, Chiang C-S, Huang W-C, et al. Amifostine-conjugated pH-sensitive calcium phosphate-covered magnetic-amphiphilic gelatin nanoparticles for controlled intracellular dual drug release for dual-targeting in HER-2-overexpressing breast cancer. J Control Release. 2015;220(Pt A):107–118.
  • Ricci M, Miola M, Multari C, et al. PPARs are mediators of anti-cancer properties of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with conjugated linoleic acid. Chem Biol Interact. 2018;292:9–14.
  • Semkina AS, Abakumov MA, Skorikov AS, et al. Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer. Nanomedicine. 2018;14(5):1733–1742.
  • Dalmina M, Pittella F, Sierra JA, et al. Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. Mater Sci Eng C Mater Biol Appl. 2019;99:1182–1190.
  • Gao P, Zhang X, Wang H, et al. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors. Oncotarget. 2016;7(3):2855–2866.
  • Jha K, Shukla M, Pandey M. Survivin expression and targeting in breast cancer. Surg Oncol. 2012;21(2):125–131.
  • Bruniaux J, Allard-Vannier E, Aubrey N, et al. Magnetic nanocarriers for the specific delivery of siRNA: contribution of breast cancer cells active targeting for down-regulation efficiency. Int J Pharm. 2019;569:118572.
  • Sun X, Liu B, Chen X, et al. Aptamer-assisted superparamagnetic iron oxide nanoparticles as multifunctional drug delivery platform for chemo-photodynamic combination therapy. J Mater Sci Mater Med. 2019;30(7):76.
  • Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–1022.
  • Mbeunkui F, Johann DJ. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol. 2009;63(4):571–582.
  • Kanapathipillai M, Brock A, Ingber DE. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Deliv Rev. 2014;79-80:107–118.
  • Zanganeh S, Hutter G, Spitler R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11(11):986–994.
  • Liu Y, Chen Z, Gu N, et al. Effects of DMSA-coated Fe3O4 magnetic nanoparticles on global gene expression of mouse macrophage RAW264.7 cells. Toxicol Lett. 2011;205(2):130–139.
  • Wolf-Grosse S, Mollnes TE, Ali S, et al. Iron oxide nanoparticles enhance toll-like receptor-induced cytokines in a particle size- and actin-dependent manner in human blood. Nanomedicine (Lond). 2018;13(14):1773–1785.
  • Gallego C, Golenbock D, Gomez MA, et al. Toll-Like receptors participate in macrophage activation and intracellular control of leishmania (viannia) panamensis. Infect Immun. 2011;79(7):2871–2879.
  • Li K, Lu L, Xue C, et al. Polarization of tumor-associated macrophage phenotype via porous hollow iron nanoparticles for tumor immunotherapy in vivo. Nanoscale. 2020;12(1):130–144.
  • Neto LMM, Zufelato N, de Sousa-Júnior AA, et al. Specific T cell induction using iron oxide based nanoparticles as subunit vaccine adjuvant. Hum Vaccines Immunotherapeutics. 2018;14(11):2786–2801.
  • Chung S, Revia RA, Zhang M. Iron oxide nanoparticles for immune cell labeling and cancer immunotherapy. Nanoscale Horiz. 2021;6(9):696–717.
  • Wu X, Cheng Y, Zheng R, et al. Immunomodulation of tumor microenvironment by Arginine-Loaded iron oxide nanoparticles for gaseous immunotherapy. ACS Appl Mater Interfaces. 2021;13(17):19825–19835.
  • Sungsuwan S, Yin Z, Huang X. Lipopeptide-Coated iron oxide nanoparticles as potential Glycoconjugate-Based synthetic anticancer vaccines. ACS Appl Mater Interfaces. 2015;7(31):17535–17544.
  • Mu Q, Lin G, Jeon M, et al. Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer. Mater Today (Kidlington). 2021;50:149–169.
  • Soetaert F, Korangath P, Serantes D, et al. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv Drug Deliv Rev. 2020;163-164:65–83.
  • Zhang F, Lu G, Wen X, et al. Magnetic nanoparticles coated with polyphenols for spatio-temporally controlled cancer photothermal/immunotherapy. J Control Release. 2020;326:131–139.
  • Estelrich J, Busquets M. Iron oxide nanoparticles in photothermal therapy. Molecules. 2018;23(7):1567.
  • Saeed M, Ren W, Wu A. Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. Biomater Sci. 2018;6(4):708–725.
  • Liu C, Li S, Ma R, et al. NIR-triggered dual sensitization of nanoparticles for mild tumor phototherapy. Nano Today. 2022;42:101363.
  • Huang L, Ao L, Hu D, et al. Magneto-plasmonic nanocapsules for multimodal-imaging and magnetically guided combination cancer therapy. Chem Mater. 2016;28(16):5896–5904.
  • Bao Z, Liu X, Liu Y, et al. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian J Pharm Sci. 2016;11(3):349–364.
  • Wang D, Fei B, Halig LV, et al. Targeted Iron-Oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano. 2014;8(7):6620–6632.
  • Yang Y-L, Lin K, Yang L. Progress in nanocarriers codelivery system to enhance the anticancer effect of photodynamic therapy. Pharmaceutics. 2021;13(11):1951.
  • Shen S, Wang S, Zheng R, et al. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials. 2015;39:67–74.
  • Chen H, Burnett J, Zhang F, et al. Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy. J Mater Chem B. 2014;2(7):757–765.
  • Han HS, Choi KY. Advances in Nanomaterial-Mediated photothermal cancer therapies: toward clinical applications. Biomedicines. 2021;9(3):305.
  • Yu D, Wang Y, Chen J, et al. Co-delivery of NIR-II semiconducting polymer and pH-sensitive doxorubicin-conjugated prodrug for photothermal/chemotherapy. Acta Biomater. 2022;137:238–251.
  • Nassireslami E, Ajdarzade M. Gold coated superparamagnetic iron oxide nanoparticles as effective nanoparticles to eradicate breast cancer cells via photothermal therapy. Adv Pharm Bull. 2018;8(2):201–209.
  • Meng Q-F, Rao L, Zan M, et al. Macrophage membrane-coated iron oxide nanoparticles for enhanced photothermal tumor therapy. Nanotechnology. 2018;29(13):134004.
  • Wang Z, Wang Y, Wang Y, et al. Biomineralized iron oxide–polydopamine hybrid nanodots for contrast-enhanced T1 -weighted magnetic resonance imaging and photothermal tumor ablation. J Mater Chem B. 2021;9(7):1781–1786.
  • Khaniabadi PM, Shahbazi-Gahrouei D, Aziz AA, et al. Trastuzumab conjugated porphyrin-superparamagnetic iron oxide nanoparticle: a potential PTT-MRI bimodal agent for herceptin positive breast cancer. Photodiagnosis Photodyn Ther. 2020;31:101896.
  • Amatya R, Hwang S, Park T, et al. In vitro and in vivo evaluation of PEGylated Starch-Coated iron oxide nanoparticles for enhanced photothermal cancer therapy. Pharmaceutics. 2021;13(6):871.
  • Guo K, Liu Y, Tang L, et al. Homotypic biomimetic coating synergizes chemo-photothermal combination therapy to treat breast cancer overcoming drug resistance. Chem Eng J. 2022;428:131120.
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–1107.
  • Yan L, Luo L, Amirshaghaghi A, et al. Dextran-Benzoporphyrin derivative (BPD) coated superparamagnetic iron oxide nanoparticle (SPION) micelles for T 2 -Weighted magnetic resonance imaging and photodynamic therapy. Bioconjug Chem. 2019;30(11):2974–2981.
  • Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002;3(8):487–497.
  • Sharma SK, Shrivastava N, Rossi F, et al. Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today. 2019;29:100795.
  • Issels RD. Hyperthermia adds to chemotherapy. Eur J Cancer. 2008;44(17):2546–2554.
  • Sakaguchi Y, Stephens LC, Makino M, et al. Apoptosis in tumors and normal tissues induced by whole body hyperthermia in rats. Cancer Res. 1995;55(22):5459–5464.
  • Hatamie S, Balasi ZM, Ahadian MM, et al. Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice. J Drug Delivery Sci Technol. 2021;65:102680.
  • Wang W, Li F, Li S, et al. M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy. J Mater Sci Technol. 2021;81:77–87.
  • Montiel Schneider MG, Martín MJ, Otarola J, et al. Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics. 2022;14(1):204.
  • Yin X, Russek SE, Zabow G, et al. Large T1 contrast enhancement using superparamagnetic nanoparticles in ultra-low field MRI. Sci Rep. 2018;8(1):11863.
  • Moradi Khaniabadi P, Shahbazi-Gahrouei D, Jaafar MS, et al. Magnetic iron oxide nanoparticles as T2 MR imaging contrast agent for detection of breast cancer (MCF-7) cell. Avicenna J Med Biotechnol. 2017;9(4):181–188.
  • Wahsner J, Gale EM, Rodríguez-Rodríguez A, et al. Chemistry of MRI contrast agents: Current challenges and new frontiers. Chem Rev. 2019;119(2):957–1057.
  • Hoshyar N, Gray S, Han H, et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016;11(6):673–692.
  • Ma D, Shi M, Li X, et al. Redox-Sensitive clustered ultrasmall iron oxide nanoparticles for switchable T 2/T 1 -weighted magnetic resonance imaging applications. Bioconjug Chem. 2020;31(2):352–359.
  • Wang P, Sun W, Guo J, et al. One pot synthesis of zwitteronic 99mTc doped ultrasmall iron oxide nanoparticles for SPECT/T1-weighted MR dual-modality tumor imaging. Colloids Surf B Biointerfaces. 2021;197:111403.
  • Keshtkar M, Shahbazi-Gahrouei D, Khoshfetrat SM, et al. Aptamer-conjugated magnetic nanoparticles as targeted magnetic resonance imaging contrast agent for breast cancer. J Med Signals Sens. 2016;6(4):243–247.
  • Kanwar JR, Kamalapuram SK, Krishnakumar S, et al. Multimodal iron oxide (Fe 3 O 4) -saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER -/PR -/HER2 -). Nanomedicine (Lond). 2016;11(3):249–268.
  • Li L, Wu C, Pan L, et al. Bombesin-functionalized superparamagnetic iron oxide nanoparticles for dual-modality MR/NIRFI in mouse models of breast cancer. Int J Nanomed. 2019;14:6721–6732.
  • Hong H, Zhang Y, Sun J, et al. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today. 2009;4(5):399–413.
  • Mirshojaei SF, Ahmadi A, Morales-Avila E, et al. Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer. J Drug Target. 2016;24(2):91–101.
  • de Souza Albernaz M, Toma SH, Clanton J, et al. Decorated superparamagnetic iron oxide nanoparticles with monoclonal antibody and Diethylene-Triamine-Pentaacetic acid labeled with thechnetium-99m and galium-68 for breast cancer imaging. Pharm Res. 2018;35(1):24.
  • Du J, Zhang Y, Jin Z, et al. Targeted NIRF/MR dual-mode imaging of breast cancer brain metastasis using BRBP1-functionalized ultra-small iron oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2020;116:111188.
  • U.S. FOOD & DRUG. Drug approvals and databases [Internet]. U.S. Food & Drug Administration; [cited 2021 Dec 30]. Available from: https://www.fda.gov/drugs/development-approval-process-drugs/drug-approvals-and-databases.
  • Toth GB, Varallyay CG, Horvath A, et al. Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int. 2017;92(1):47–66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.