201
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Nano-medicine therapy reprogramming metabolic network of tumour microenvironment: new opportunity for cancer therapies

, , , & ORCID Icon
Pages 241-257 | Received 13 Jun 2023, Accepted 26 Sep 2023, Published online: 01 Feb 2024

References

  • Koppenol WH, Bounds PL. The warburg effect and metabolic efficiency: re-crunching the numbers. Science. 2009;324(5930):1029–1033.
  • Yang B, Shi J. Chemistry of advanced nanomedicines in cancer cell metabolism regulation. Adv Sci (Weinh). 2020;7(18):2001388. doi:10.1002/advs.202001388.
  • Xu Y, Xiong J, Sun X, et al. Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Acta Pharm Sin B. 2022;12(12):4327–4347. doi:10.1016/j.apsb.2022.11.001.
  • Li X, Wenes M, Romero P, et al. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 2019;16(7):425–441. doi:10.1038/s41571-019-0203-7.
  • Zhao LP, Chen SY, Zheng RR, et al. Self-Delivery nanomedicine for glutamine-starvation enhanced photodynamic tumor therapy. Adv Healthc Mater. 2022;11(3):e2102038. doi:10.1002/adhm.202102038.
  • Xiong H, Ma X, Wang X, et al. Inspired epigenetic modulation synergy with adenosine inhibition elicits pyroptosis and potentiates cancer immunotherapy. Adv Funct Materials. 2021;31(20):2100007. doi:10.1002/adfm.202100007.
  • Fang XL, Akrofi R, Yang H, et al. The NIR inspired nano-CuSMn(II) composites for lactate and glycolysis attenuation. Colloids Surf B Biointerfaces. 2019;181:728–733. doi:10.1016/j.colsurfb.2019.06.031.
  • Liu Y, Lu Y, Zhu X, et al. Tumor microenvironment-responsive prodrug nanoplatform via co-self-assembly of photothermal agent and IDO inhibitor for enhanced tumor penetration and cancer immunotherapy. Biomaterials. 2020;242:119933. Advance online publication doi: 10.1016/j.biomaterials.2020.119933.
  • Xu L, Xu R, Saw PE, et al. Nanoparticle-Mediated inhibition of mitochondrial glutaminolysis to amplify oxidative stress for combination cancer therapy. Nano Lett. 2021;21(18):7569–7578. doi:10.1021/acs.nanolett.1c02073.
  • Dong M, Xiao XZ, Su ZG, et al. Light-Induced ROS generation and 2-DG-activated endoplasmic reticulum stress by antitumor nanosystems: an effective combination therapy by regulating the tumor microenvironment. Small. 2019;15(17):e1900212. doi:10.1002/smll.201900212.
  • Halestrap AP. The monocarboxylate transporter family–structure and functional characterization. IUBMB Life. 2012;64(1):1–9. doi:10.1002/iub.573.
  • Peppicelli S, Andreucci E, Ruzzolini J, et al. The acidic microenvironment as a possible niche of dormant tumor cells. Cell Mol Life Sci. 2017;74(15):2761–2771. doi:10.1007/s00018-017-2496-y.
  • Brand A, Singer K, Koehl GE, et al. LDHA-Associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24(5):657–671. doi:10.1016/j.cmet.2016.08.011.
  • Caronni N, Simoncello F, Stafetta F, et al. Downregulation of membrane trafficking proteins and lactate conditioning determine loss of dendritic cell function in lung cancer. Cancer Res. 2018;78(7):1685–1699. doi:10.1158/0008-5472.CAN-17-1307.
  • Raychaudhuri D, Bhattacharya R, Sinha BP, et al. Lactate induces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells. Front Immunol. 2019;10:1878. doi:10.3389/fimmu.2019.01878.
  • Wan M, Ding Y, Li Z, et al. Metabolic manipulation of the tumour immune microenvironment. Immunology. 2022;165(3):290–300. doi:10.1111/imm.13444.
  • Feichtinger RG, Lang R. Targeting L-lactate metabolism to overcome resistance to immune therapy of melanoma and other tumor entities. J Oncol. 2019;2019:2084195–2084112. doi:10.1155/2019/2084195.
  • Kalinski P, Talmadge JE. Tumor Immuno-Environment in cancer progression and therapy. Adv Exp Med Biol. 2017;1036:1–18. doi:10.1007/978-3-319-67577-0_1.
  • Liu N, Luo J, Kuang D, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J Clin Invest. 2019;129(2):631–646. doi:10.1172/JCI123027.
  • Goswami KK, Banerjee S, Bose A, et al. Lactic acid in alternative polarization and function of macrophages in tumor microenvironment. Human Immunology. 2022;83(5):409–417. doi:10.1016/j.humimm.2022.02.007.
  • Sasaki K, Nishina S, Yamauchi A, et al. Nanoparticle-Mediated delivery of 2-Deoxy-D-glucose induces antitumor immunity and cytotoxicity in liver tumors in mice. Cell Mol Gastroenterol Hepatol. 2021;11(3):739–762. doi:10.1016/j.jcmgh.2020.10.010.
  • Lei X, Li K, Liu Y, et al. Co-delivery nanocarriers targeting folate receptor and encapsulating 2-deoxyglucose and α-tocopheryl succinate enhance anti-tumor effect in vivo. Int J Nanomedicine. 2017;12:5701–5715. doi:10.2147/IJN.S135849.
  • Luo Y, Li Y, Huang Z, et al. A nanounit strategy disrupts energy metabolism and alleviates immunosuppression for cancer therapy. Nano Lett. 2022;22(15):6418–6427. doi:10.1021/acs.nanolett.2c02475.
  • Jin S, Du Z, Guo H, et al. Novel targeted anti-tumor nanoparticles developed from folic acid-modified 2-Deoxyglucose. Int J Mol Sci. 2019;20(3):697. doi:10.3390/ijms20030697.
  • Abolhasani A, Biria D, Abolhasani H, et al. Investigation of the role of glucose decorated chitosan and PLGA nanoparticles as blocking agents to glucose transporters of tumor cells. Int J Nanomedicine. 2019;14:9535–9546. doi:10.2147/IJN.S228652.
  • Suzuki K, Miura Y, Mochida Y, et al. Glucose transporter 1-mediated vascular translocation of nanomedicines enhances accumulation and efficacy in solid tumors. J Control Release. 2019;301:28–41. doi:10.1016/j.jconrel.2019.02.021.
  • Wang S, An J, Dong W, et al. Glucose-coated berberine nanodrug for glioma therapy through mitochondrial pathway. Int J Nanomedicine. 2020;15:7951–7965. doi:10.2147/IJN.S213079.
  • Xu CF, Liu Y, Shen S, et al. Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy. Biomaterials. 2015;51:1–11. doi:10.1016/j.biomaterials.2015.01.068.
  • Jiang W, Luo X, Wei L, et al. The sustainability of energy conversion inhibition for tumor ferroptosis therapy and chemotherapy. Small. 2021;17(38):e2102695. doi:10.1002/smll.202102695.
  • Li X, Jiang C, Wang Q, et al. A "Valve-Closing" starvation strategy for amplification of tumor-specific chemotherapy. Adv Sci (Weinh). 2022;9(8):e2104671. doi:10.1002/advs.202104671.
  • Fu LH, Qi C, Hu YR, et al. Glucose oxidase-Instructed multimodal synergistic cancer therapy. Adv Mater. 2019;31(21):e1808325. doi:10.1002/adma.201808325.
  • Wang M, Wang D, Chen Q, et al. Recent advances in glucose-oxidase-based nanocomposites for tumor therapy. Small. 2019;15(51):e1903895. doi:10.1002/smll.201903895.
  • Zhang M, Liu Q, Zhang M, et al. Enhanced antitumor effects of follicle-stimulating hormone receptor-mediated hexokinase-2 depletion on ovarian cancer mediated by a shift in glucose metabolism. J Nanobiotechnol. 2020;18(1):161. doi:10.1186/s12951-020-00720-4.
  • Meng Z, Zhang X, Tan H, et al. Zinc-enriched nanosystem for dual glycolysis regulation and photothermal therapy to synergistically inhibit primary melanoma and lung metastasis. Chemical Engineering Journal. 2022;435:134781. doi:10.1016/j.cej.2022.134781.
  • Dai Z, Wang Q, Tang J, et al. A Sub-6 nm MnFe2O4-dichloroacetic acid nanocomposite modulates tumor metabolism and catabolism for reversing tumor immunosuppressive microenvironment and boosting immunotherapy. Biomaterials. 2022;284:121533. doi:10.1016/j.biomaterials.2022.121533.
  • Zhao Q, Li J, Wu B, et al. Smart biomimetic nanocomposites mediate mitochondrial outcome through aerobic glycolysis reprogramming: a promising treatment for lymphoma. ACS Appl Mater Interfaces. 2020;12(20):22687–22701. doi:10.1021/acsami.0c05763.
  • Tian LR, Lin MZ, Zhong HH, et al. Nanodrug regulates lactic acid metabolism to reprogram the immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Biomater Sci. 2022;10(14):3892–3900. doi:10.1039/d2bm00650b.
  • Yu W, Lin R, He X, et al. Self-propelled nanomotor reconstructs tumor microenvironment through synergistic hypoxia alleviation and glycolysis inhibition for promoted anti-metastasis. Acta Pharm Sin B. 2021;11(9):2924–2936. doi:10.1016/j.apsb.2021.04.006.
  • Yu J, Wei Z, Li Q, et al. Advanced cancer starvation therapy by simultaneous deprivation of lactate and glucose using a MOF nanoplatform. Adv Sci (Weinh). 2021;8(19):e2101467. doi:10.1002/advs.202101467.
  • Qin X, Zhang M, Hu X, et al. Nanoengineering of a newly designed chlorin e6 derivative for amplified photodynamic therapy via regulating lactate metabolism. Nanoscale. 2021;13(27):11953–11962. doi:10.1039/d1nr01083b.
  • Li K, Lin C, He Y, et al. Engineering of Cascade-Responsive nanoplatform to inhibit lactate efflux for enhanced tumor Chemo-Immunotherapy. ACS Nano. 2020;14(10):14164–14180. doi:10.1021/acsnano.0c07071.
  • Jiang Y, Tan Y, Xiao K, et al. pH-regulating nanoplatform for the "double channel chase " of tumor cells by the synergistic Cascade between chlorine treatment and Methionine-Depletion starvation therapy. ACS Appl Mater Interfaces. 2021;13(46):54690–54705. doi:10.1021/acsami.1c14802.
  • Chen ZX, Liu MD, Guo DK, et al. A MSN-based tumor-targeted nanoplatform to interfere with lactate metabolism to induce tumor cell acidosis for tumor suppression and anti-metastasis. Nanoscale. 2020;12(5):2966–2972. doi:10.1039/c9nr10344a.
  • He R, Zang J, Zhao Y, et al. Nanofactory for metabolic and chemodynamic therapy: pro-tumor lactate trapping and anti-tumor ROS transition. J Nanobiotechnol. 2021;19(1):426. doi:10.1186/s12951-021-01169-9.
  • Zhou X, Zhao W, Wang M, et al. Dual-Modal therapeutic role of the lactate oxidase-Embedded hierarchical porous zeolitic imidazolate framework as a nanocatalyst for effective tumor suppression. ACS Appl Mater Interfaces. 2020;12(29):32278–32288. doi:10.1021/acsami.0c05783.
  • Gao F, Tang Y, Liu WL, et al. Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors. Adv Mater. 2019;31(51):e1904639. doi:10.1002/adma.201904639.
  • Tian F, Wang S, Shi K, et al. Dual-Depletion of intratumoral lactate and ATP with radicals generation for Cascade metabolic-Chemodynamic therapy. Adv Sci (Weinh). 2021;8(24):e2102595. doi:10.1002/advs.202102595.
  • Wu W, Pu Y, Yao H, et al. Microbiotic nanomedicine for tumor-specific chemotherapy-synergized innate/adaptive antitumor immunity. Nano Today. 2022;42:101377. doi:10.1016/j.nantod.2022.101377.
  • Tian H, Zhou L, Wang Y, et al. A targeted nanomodulator capable of manipulating tumor microenvironment against metastasis. J Control Release. 2022;348:590–600. doi:10.1016/j.jconrel.2022.06.022.
  • Zheng X, Liu Y, Liu Y, et al. Dual Closed-Loop of catalyzed lactate depletion and immune response to potentiate photothermal immunotherapy. ACS Appl Mater Interfaces. 2022; Advance online publication. 10.1021/acsami.2c07254 doi: 10.1021/acsami.2c07254.
  • Tang Y, Jia C, Wang Y, et al. Lactate consumption via cascaded enzymes combined VEGF siRNA for synergistic anti-proliferation and anti-angiogenesis therapy of tumors. Adv Healthc Mater. 2021;10(19):e2100799. doi:10.1002/adhm.202100799.
  • Wang H, Wang B, Jiang J, et al. SnSe nanosheets mimic lactate dehydrogenase to reverse tumor acid microenvironment metabolism for enhancement of tumor therapy. Molecules. 2022;27(23):8552. doi:10.3390/molecules27238552.
  • Zhou Y, Tong F, Gu W, et al. Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors. Acta Pharm Sin B. 2022;12(3):1416–1431. doi:10.1016/j.apsb.2021.12.001.
  • Chen QW, Wang JW, Wang XN, et al. Inhibition of tumor progression through the coupling of bacterial respiration with tumor metabolism. Angew Chem Int Ed Engl. 2020;59(48):21562–21570. doi:10.1002/anie.202002649.
  • Fang C, Deng Z, Cao G, et al. Co–ferrocene MOF/glucose oxidase as Cascade nanozyme for effective tumor therapy. Adv Funct Materials. 2020;30(16):1910085. doi:10.1002/adfm.201910085.
  • Chen ZX, Liu MD, Zhang MK, et al. Interfering with lactate‐fueled respiration for enhanced photodynamic tumor therapy by a porphyrinic MOF nanoplatform. Adv Funct Mater. 2018;28(36):1803498.
  • Park JK, Coffey NJ, Limoges A, et al. The heterogeneity of lipid metabolism in cancer. Adv Exp Med Biol. 2018;1063:33–55. doi:10.1007/978-3-319-77736-8_3.
  • Wu L, Zhang X, Zheng L, et al. RIPK3 orchestrates fatty acids metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol Res. 2020;8(5):710–721. doi:10.1158/2326-6066.CIR-19-0261.
  • Mehla K, Singh PK. Metabolic regulation of macrophage polarization in cancer. Trends Cancer. 2019;5(12):822–834. doi:10.1016/j.trecan.2019.10.007.
  • DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19(6):369–382. doi:10.1038/s41577-019-0127-6.
  • Hu B, Lin JZ, Yang XB, et al. Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: a review. Cell Prolif. 2020;53(3):e12772. doi:10.1111/cpr.12772.
  • Veglia F, Tyurin VA, Mohammadyani D, et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun. 2017;8(1):2122. doi:10.1038/s41467-017-02186-9.
  • Yin X, Zeng W, Wu B, et al. PPARα inhibition overcomes tumor-Derived exosomal lipid-induced dendritic cell dysfunction. Cell Rep. 2020;33(3):108278. doi:10.1016/j.celrep.2020.108278.
  • Zhou X, Zhu X, Li C, et al. Stearoyl-CoA Desaturase-Mediated monounsaturated fatty acids availability supports humoral immunity. Cell Rep. 2021;34(1):108601. doi:10.1016/j.celrep.2020.108601.
  • Yang R, Fang XL, Zhen Q, et al. Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASN. Colloids Surf B Biointerfaces. 2019;182:110405. doi:10.1016/j.colsurfb.2019.110405.
  • Cao S, Saw PE, Shen Q, et al. Reduction-responsive RNAi nanoplatform to reprogram tumor lipid metabolism and repolarize macrophage for combination pancreatic cancer therapy. Biomaterials. 2022;280:121264. doi:10.1016/j.biomaterials.2021.121264.
  • Zhou X, Cao T. Zinc oxide nanoparticle inhibits tumorigenesis of renal cell carcinoma by modulating lipid metabolism targeting miR-454-3p to repressing metabolism enzyme ACSL4. J Oncol. 2022;2022:2883404–2883410. doi:10.1155/2022/2883404.
  • Ramesh A, Malik V, Brouillard A, et al. Supramolecular nanotherapeutics enable metabolic reprogramming of tumor-associated macrophages to inhibit tumor growth. J Biomed Mater Res A. 2022;110(8):1448–1459. doi:10.1002/jbm.a.37391.
  • Du B, Jiao Q, Bai Y, et al. Glutamine metabolism-regulated nanoparticles to enhance chemoimmunotherapy by increasing antigen presentation efficiency. ACS Appl Mater Interfaces. 2022;14(7):8753–8765. doi:10.1021/acsami.1c21417.
  • Jiang Q, Lu S, Xu X, et al. Inhibition of alanine-serine-cysteine transporter 2-mediated auto-enhanced photodynamic cancer therapy of co-nanoassembly between V-9302 and photosensitizer. J Colloid Interface Sci. 2022;629(Pt B):773–784. Advance online publication doi: 10.1016/j.jcis.2022.05.044.
  • Jian H, Zhang Y, Wang J, et al. Zeolitic imidazolate framework-based nanoparticles for the Cascade enhancement of cancer chemodynamic therapy by targeting glutamine metabolism. Nanoscale. 2022;14(24):8727–8743. doi:10.1039/d2nr01736a.
  • Wu F, Du Y, Yang J, et al. Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death. ACS Nano. 2022;16(3):3647–3663. doi:10.1021/acsnano.1c06777.
  • Ren J, Zhou J, Liu H, et al. Ultrasound (US)-activated redox dyshomeostasis therapy reinforced by immunogenic cell death (ICD) through a mitochondrial targeting liposomal nanosystem. Theranostics. 2021;11(19):9470–9491. doi:10.7150/thno.62984.
  • Ding M, Kong X, Chen W, et al. Efficient starvation therapy with three-pathway blocking in combination with PTT/CDT for TME reversal and tumor apoptosis. J Ind Eng Chem. 2022;110:456–470. doi:10.1016/j.jiec.2022.03.022.
  • Liao P, Wang W, Wang W, et al. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022;40(4):365–378.e6. doi:10.1016/j.ccell.2022.02.003.
  • Cluntun AA, Lukey MJ, Cerione RA, et al. Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer. 2017;3(3):169–180. doi:10.1016/j.trecan.2017.01.005.
  • Pallett LJ, Dimeloe S, Sinclair LV, et al. A glutamine ‘tug-of-war’: targets to manipulate glutamine metabolism for cancer immunotherapy. Immunother Adv. 2021;1(1):ltab010. doi:10.1093/immadv/ltab010.
  • Klysz D, Tai X, Robert PA, et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal. 2015;8(396):ra97. doi:10.1126/scisignal.aab2610.
  • Ren W, Xia Y, Chen S, et al. Glutamine metabolism in macrophages: a novel target for obesity/type 2 diabetes. Adv Nutr. 2019;10(2):321–330. doi:10.1093/advances/nmy084.
  • Chen G, Xu Q, Feng Z, et al. Glutamine antagonist synergizes with electrodynamic therapy to induce tumor regression and systemic antitumor immunity. ACS Nano. 2022;16(1):951–962. doi:10.1021/acsnano.1c08544.
  • Teixeira E, Silva C, Martel F. The role of the glutamine transporter ASCT2 in antineoplastic therapy. Cancer Chemother Pharmacol. 2021;87(4):447–464. doi:10.1007/s00280-020-04218-6.
  • Giesen B, Nickel AC, Barthel J, et al. Augmented therapeutic potential of glutaminase inhibitor CB839 in glioblastoma stem cells using gold nanoparticle delivery. Pharmaceutics. 2021;13(2):295. doi:10.3390/pharmaceutics13020295.
  • Grohmann U, Bronte V. Control of immune response by amino acid metabolism. Immunol Rev. 2010;236(1):243–264. doi:10.1111/j.1600-065X.2010.00915.x.
  • Phillips MM, Sheaff MT, Szlosarek PW. Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges. Cancer Res Treat. 2013;45(4):251–262. doi:10.4143/crt.2013.45.4.251.
  • Ananieva E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. WJBC. 2015;6(4):281–289. doi:10.4331/wjbc.v6.i4.281.
  • Mondanelli G, Ugel S, Grohmann U, et al. The immune regulation in cancer by the amino acid metabolizing enzymes ARG and IDO. Curr Opin Pharmacol. 2017;35:30–39. doi:10.1016/j.coph.2017.05.002.
  • Biswas SK. Metabolic reprogramming of immune cells in cancer progression. Immunity. 2015;43(3):435–449. doi:10.1016/j.immuni.2015.09.001.
  • He X, Feng J, Yan S, et al. Biomimetic microbioreactor-supramolecular nanovesicles improve enzyme therapy of hepatic cancer. Nanomedicine. 2021;31:102311. doi:10.1016/j.nano.2020.102311.
  • Jin Q, Deng Y, Jia F, et al. Gas therapy: an emerging “green” strategy for anticancer therapeutics. Advanced Therapeutics. 2018;1(6):1800084. doi:10.1002/adtp.201800084.
  • Cheng L, Qiu S, Wang J, et al. A multifunctional nanocomposite based on Pt-modified black phosphorus nanosheets loading with l-arginine for synergistic gas-sonodynamic cancer therapy. Colloids Surf, A. 2022;638:128284. doi:10.1016/j.colsurfa.2022.128284.
  • Qian S, Zhang M, Chen Q, et al. Correction: IDO as a drug target for cancer immunotherapy: recent developments in IDO inhibitors discovery. RSC Adv. 2016;6(66):61267–61267. doi:10.1039/C6RA90050J.
  • Zhang Y, Feng Y, Huang Y, et al. Tumor-Targeted gene silencing IDO synergizes PTT-Induced apoptosis and enhances anti-tumor immunity. Front Immunol. 2020;11:968. doi:10.3389/fimmu.2020.00968.
  • Du L, He H, Xiao Z, et al. GSH-Responsive metal-organic framework for intratumoral release of NO and IDO inhibitor to enhance antitumor immunotherapy. Small. 2022;18(15):e2107732. doi:10.1002/smll.202107732.
  • Hu C, Song Y, Zhang Y, et al. Sequential delivery of PD-1/PD-L1 blockade peptide and IDO inhibitor for immunosuppressive microenvironment remodeling via an MMP-2 responsive dual-targeting liposome. Acta Pharm Sin B. 2023;13(5):2176–2187. doi:10.1016/j.apsb.2023.02.009.
  • Vigano S, Alatzoglou D, Irving M, et al. Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front Immunol. 2019;10:925. doi:10.3389/fimmu.2019.00925.
  • Vijayan D, Young A, Teng MWL, et al. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer. 2017;17(12):709–724. doi:10.1038/nrc.2017.86.
  • Borea PA, Gessi S, Merighi S, et al. Pharmacology of adenosine receptors: the state of the art. Physiol Rev. 2018;98(3):1591–1625. doi:10.1152/physrev.00049.2017.
  • Cekic C, Linden J. Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment. Cancer Res. 2014;74(24):7239–7249. doi:10.1158/0008-5472.CAN-13-3581.
  • Mastelic-Gavillet B, Navarro Rodrigo B, Décombaz L, et al. Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8+ T cells. J Immunotherapy Cancer. 2019;7(1):257. doi:10.1186/s40425-019-0719-5.
  • Allard B, Beavis PA, Darcy PK, et al. Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol. 2016;29:7–16. doi:10.1016/j.coph.2016.04.001.
  • Ohta A. A metabolic immune checkpoint: adenosine in tumor microenvironment. Front Immunol. 2016;7:109. doi:10.3389/fimmu.2016.00109.
  • Ohta A, Kini R, Ohta A, et al. The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immun. 2012;3:190. doi:10.3389/fimmu.2012.00190v.
  • Luo A, Meng M, Wang G, et al. Myeloid-Derived suppressor cells recruited by chemokine (C-C motif) ligand 3 promote the progression of breast cancer via phosphoinositide 3-kinase-protein kinase B-Mammalian target of rapamycin signaling. J Breast Cancer. 2020;23(2):141–161. doi:10.4048/jbc.2020.23.e26.
  • Mao C, Yeh S, Fu J, et al. Delivery of an ectonucleotidase inhibitor with ROS-responsive nanoparticles overcomes adenosine-mediated cancer immunosuppression. Sci Transl Med. 2022;14(648):eabh1261. doi:10.1126/scitranslmed.abh1261.
  • Allard D, Turcotte M, Stagg J. Targeting A2 adenosine receptors in cancer. Immunol Cell Biol. 2017;95(4):333–339. doi:10.1038/icb.2017.8.
  • Jadidi-Niaragh F, Atyabi F, Rastegari A, et al. CD73 specific siRNA loaded chitosan lactate nanoparticles potentiate the antitumor effect of a dendritic cell vaccine in 4T1 breast cancer bearing mice. J Control Release. 2017;246:46–59. doi:10.1016/j.jconrel.2016.12.012.
  • Fu X, Shi Y, Zang H, et al. Combination of oxaliplatin and POM-1 by nanoliposomes to reprogram the tumor immune microenvironment. J Control Release. 2022;347:1–13. doi:10.1016/j.jconrel.2022.04.041.
  • Liu TI, Tsai YC, Wang TM, et al. Development of a nano-immunomodulator encapsulating R837 and caffeine for combined radio-/immunotherapy against orthotopic breast cancer. Progress in Natural Science: materials International. 2020;30(5):697–706. doi:10.1016/j.pnsc.2020.09.014.
  • Zhang C, Huang J, Zeng Z, et al. Catalytical nano-immunocomplexes for remote-controlled sono-metabolic checkpoint trimodal cancer therapy. Nat Commun. 2022;13(1):3468. doi:10.1038/s41467-022-31044-6.
  • Allahyari SE, Hajizadeh F, Zekiy AO, et al. Simultaneous inhibition of CD73 and IL-6 molecules by siRNA-loaded nanoparticles prevents the growth and spread of cancer. Nanomedicine. 2021;34:102384. doi:10.1016/j.nano.2021.102384.
  • Zhu J, Jiao A, Li Q, et al. Mitochondrial Ca2+-overloading by oxygen/glutathione depletion-boosted photodynamic therapy based on a CaCO3 nanoplatform for tumor synergistic therapy. Acta Biomater. 2022;137:252–261. doi:10.1016/j.actbio.2021.10.016.
  • Shi M, Zhang J, Wang Y, et al. Tumor-specific nitric oxide generator to amplify peroxynitrite based on highly penetrable nanoparticles for metastasis inhibition and enhanced cancer therapy. Biomaterials. 2022;283:121448. doi:10.1016/j.biomaterials.2022.121448.
  • Jin F, Qi J, Liu D, et al. Cancer-cell-biomimetic upconversion nanoparticles combining chemo-photodynamic therapy and CD73 blockade for metastatic triple-negative breast cancer. J Control Release. 2021;337:90–104. doi:10.1016/j.jconrel.2021.07.021.
  • Ghasemi-Chaleshtari M, Kiaie SH, Irandoust M, et al. Concomitant blockade of A2AR and CTLA-4 by siRNA-loaded polyethylene glycol-chitosan-alginate nanoparticles synergistically enhances antitumor T-cell responses. J Cell Physiol. 2020;235(12):10068–10080. doi:10.1002/jcp.29822.
  • Siriwon N, Kim YJ, Siegler E, et al. CAR-T cells surface-Engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction. Cancer Immunol Res. 2018;6(7):812–824. doi:10.1158/2326-6066.CIR-17-0502.
  • Xu C, Jiang Y, Huang J, et al. Second near-Infrared Light-Activatable polymeric nanoantagonist for photothermal immunometabolic cancer therapy. Adv Mater. 2021;33(36):e2101410. doi:10.1002/adma.202101410.
  • Xue T, Zhang Z, Fang T, et al. Cellular vesicles expressing PD-1-blocking scFv reinvigorate T cell immunity against cancer. Nano Res. 2022;15(6):5295–5304. doi:10.1007/s12274-022-4182-0.
  • Yu M, Zeng W, Ouyang Y, et al. ATP-exhausted nanocomplexes for intratumoral metabolic intervention and photoimmunotherapy. Biomaterials. 2022;284:121503. doi:10.1016/j.biomaterials.2022.121503.
  • Xu K, Wu X, Cheng Y, et al. A biomimetic nanoenzyme for starvation therapy enhanced photothermal and chemodynamic tumor therapy. Nanoscale. 2020;12(45):23159–23165. doi:10.1039/d0nr05097k.
  • Duan Y, Wang J, Wang J, et al. Dual-enzyme catalytic nanosystem-mediated ATP depletion strategy for tumor elimination via excessive autophagy pathway. Chemical Engineering Journal. 2022;446:136795. doi:10.1016/j.cej.2022.136795.
  • Wei G, Yang G, Wei B, et al. Near-infrared light switching nitric oxide nanoemitter for triple-combination therapy of multidrug resistant cancer. Acta Biomater. 2019;100:365–377. doi:10.1016/j.actbio.2019.10.002.
  • Zheng RR, Zhao LP, Liu LS, et al. Self-delivery nanomedicine to overcome drug resistance for synergistic chemotherapy. Biomater Sci. 2021;9(9):3445–3452. doi:10.1039/d1bm00119a.
  • Lin J, Zhao C, Liu C, et al. Redox-responsive F127-folate/F127-disulfide bond-d-α-tocopheryl polyethylene glycol 1000 succinate/P123 mixed micelles loaded with paclitaxel for the reversal of multidrug resistance in tumors. Int J Nanomedicine. 2018;13:805–830. doi:10.2147/IJN.S152395.
  • Guo W, Chen Z, Feng X, et al. Graphene oxide (GO)-based nanosheets with combined chemo/photothermal/photodynamic therapy to overcome gastric cancer (GC) paclitaxel resistance by reducing mitochondria-derived adenosine-triphosphate (ATP). J Nanobiotechnol. 2021;19(1):146. doi:10.1186/s12951-021-00874-9.
  • Gui L, Zhou J, Zhou L, et al. A smart copper-phthalocyanine framework nanoparticle for enhancing photodynamic therapy in hypoxic conditions by weakening cells through ATP depletion. J Mater Chem B. 2018;6(14):2078–2088. doi:10.1039/c8tb00334c.
  • Sun T, Xu J, Chen T, et al. A self-amplified ROS-responsive chemodrug-inhibitor conjugate for multi-drug resistance tumor therapy. Biomater Sci. 2022;10(4):997–1007. doi:10.1039/d1bm01605a.
  • Zhu H, Cao G, Fu Y, et al. ATP-responsive hollow nanocapsules for DOX/GOx delivery to enable tumor inhibition with suppressed P-glycoprotein. Nano Res. 2021;14(1):222–231. doi:10.1007/s12274-020-3071-7.
  • Zhang Y, Wei J, Xu J, et al. Suppression of tumor energy supply by liposomal Nanoparticle-Mediated inhibition of aerobic glycolysis. ACS Appl Mater Interfaces. 2018;10(3):2347–2353. doi:10.1021/acsami.7b16685.
  • Ding XL, Liu MD, Cheng Q, et al. Multifunctional liquid metal-based nanoparticles with glycolysis and mitochondrial metabolism inhibition for tumor photothermal therapy. Biomaterials. 2022;281:121369. doi:10.1016/j.biomaterials.2022.121369.
  • Xiang Q, Qiao B, Luo Y, et al. Increased photodynamic therapy sensitization in tumors using a nitric oxide-based nanoplatform with ATP-production blocking capability. Theranostics. 2021;11(4):1953–1969. doi:10.7150/thno.52997.
  • Wan SS, Liu MD, Cheng Q, et al. A mitochondria-driven metabolic sensing nanosystem for oxygen availability and energy blockade of cancer. Advanced Therapeutics. 2020;3(6):2000019. doi:10.1002/adtp.202000019.
  • Liu Y, Liu Y, Xu D, et al. Targeting the negative feedback of adenosine-A2AR metabolic pathway by a tailored nanoinhibitor for photothermal immunotherapy. Adv Sci (Weinh). 2022;9(14):e2104182. doi:10.1002/advs.202104182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.