181
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Dehydrocurvularin-loaded mPEG-PLGA nanoparticles for targeted breast cancer drug delivery: preparation, characterization, in vitro, and in vivo evaluation

, , , , , , & show all
Pages 325-333 | Received 07 Aug 2023, Accepted 09 Nov 2023, Published online: 01 Feb 2024

References

  • DeSantis CE, Ma JM, Gaudet MM, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–451. doi: 10.3322/caac.21583.
  • Chlebowski RT, Aragaki AK, Pan K. Breast cancer prevention and breast cancer mortality. J Clin Oncol Oncol Pract. 2022;18(7):522–523. doi: 10.1200/OP.22.00091.
  • Biffi S, Voltan R, Bortot B, et al. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin Drug Deliv. 2019;16(5):481–496. doi: 10.1080/17425247.2019.1604679.
  • Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target. 2016;24(3):179–191. doi: 10.3109/1061186X.2015.1051049.
  • Roy A, Ernsting MJ, Undzys E, et al. A highly tumor-targeted nanoparticle of podophyllotoxin penetrated tumor core and regressed multidrug resistant tumors. Biomaterials. 2015;52(26):335–346. doi: 10.1016/j.biomaterials.2015.02.041.
  • You CC, Zhang SM, Sun YM, et al. β-catenin decreases acquired TRAIL resistance in non-small-cell lung cancer cells by regulating the redistribution of death receptors. Int J Oncol. 2018;53(5):2258–2268. doi: 10.3892/ijo.2018.4529.
  • Korde LA, Somerfield MR, Carey LA, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J Clin Oncol. 2021;39(13):1485–1505. doi: 10.1200/JCO.20.03399.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803. doi: 10.1021/acs.jnatprod.9b01285.
  • Caputo O, Viola F. Isolation of a, β-dehydrocurvularin from Aspergillus aureofulgens. Planta Med. 1977;31(1):31–32. doi: 10.1055/s-0028-1097485.
  • Zhou FG, Zhou YQ, Guo ZY, et al. Review of 10,11-dehydrocurvularin: synthesis, structural diversity, bioactivities and mechanisms. Mini Rev Med Chem. 2022;22(6):836–847. doi: 10.2174/1389557521666210428132256.
  • Deng ZS, Deng AP, Luo D, et al. Biotransformation of (-)-(10E,15S)-10,11-dehydrocurvularin. Nat Prod Commun. 2015;10(7):1277–1278.
  • Zhao Q, Bi Y, Zhong J, et al. 10,11-dehydrocurvularin exerts antitumor effect against human breast cancer by suppressing STAT3 activation. Acta Pharmacol Sin. 2021;42(5):791–800. doi: 10.1038/s41401-020-0499-y.
  • Kamauchi H, Furukawa M, Kiba Y, et al. Antifungal activity of dehydrocurvularin for candida spp. through the inhibition of adhesion to human adenocarcinoma cells. J Antibiot. 2022;75(9):530–533. doi: 10.1038/s41429-022-00543-5.
  • Rudolph K, Serwe A, Erkel G. Inhibition of TGF-β signaling by the fungal lactones (S)-curvularin, dehydrocurvularin, oxacyclododecindione and galiellalactone. Cytokine. 2013;61(1):285–296. doi: 10.1016/j.cyto.2012.10.011.
  • Deasy PB, Finan MP, Meegan MJ. Preparation and characterization of lactic/glycolic acid polymers and copolymers. J Microencapsul. 1989;6(3):369–378. doi: 10.3109/02652048909019919.
  • Fang Y, Xue JX, Gao S, et al. Cleavable pegylation: a strategy for overcoming the “PEG dilemma” in efficient drug delivery. Drug Deliv. 2017;24(sup1):22–32. doi: 10.1080/10717544.2017.1388451.
  • Hu YL, Zhu XY, Zhao RF, et al. Doxorubicin and paclitaxel carried by methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) is superior than traditional drug-delivery methods. Nanomedicine. 2018;13(8):913–928. doi: 10.2217/nnm-2017-0363.
  • Mohan LJ, McDonald L, Daly JS, et al. Optimising PLGA-PEG nanoparticle size and distribution for enhanced drug targeting to the inflamed intestinal barrier. Pharmaceutics. 2020;12(11):1114. doi: 10.3390/pharmaceutics12111114.
  • Wang YJ, Pasternak M, Sathiyamoorthy K, et al. Anti-HER2 PLGA-PEG polymer nanoparticle containing gold nanorods and paclitaxel for laser-activated breast cancer detection and therapy. Biomed Opt Express. 2021;12(4):2171–2185. doi: 10.1364/BOE.419252.
  • Sufi SA, Hoda M, Pajaniradje S, et al. Enhanced drug retention, sustained release, and anti-cancer potential of curcumin and indole-curcumin analog-loaded polysorbate 80-stabilizied PLGA nanoparticles in colon cancer cell line SW480. Int J Pharm. 2020;588:119738. doi: 10.1016/j.ijpharm.2020.119738.
  • Zambito Y, Pedreschi E, Colo GD. Is dialysis a reliable method for studying drug release from nanoparticulate systems?—A case study. Int J Pharm. 2012;434(1–2):28–34. doi: 10.1016/j.ijpharm.2012.05.020.
  • Gao RJ, Mitra RN, Zheng M, et al. Developing nanoceria-based pH-dependent cancer-directed drug delivery system for retinoblastoma. Adv Funct Mater. 2018;28(52):1806248.
  • Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2014;4(1):81–89. doi: 10.7150/thno.7193.
  • Zelikovich D, Savchenko P, Mandler D. High recognition of isomer-stabilized gold nanoparticles through matrix imprinting. ACS Appl Mater Interfaces. 2023;15(27):32687–32696. doi: 10.1021/acsami.3c04311.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.