206
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Harnessing the synergistic potential of NK1R antagonists and selective COX-2 inhibitors for simultaneous targeting of TNBC cells and cancer stem cells

, &
Pages 258-269 | Received 26 Sep 2023, Accepted 11 Jan 2024, Published online: 01 Feb 2024

References

  • Sen S, Gayen R, Das S, et al. A clinical and pathological study of triple negative breast carcinoma: experience of a tertiary care Centre in Eastern India. J Indian Med Assoc. 2012;110(10):686–689, 705.
  • Thakur KK, Bordoloi D, Kunnumakkara AB. Alarming burden of triple-negative breast cancer in India. Clin Breast Cancer. 2018;18(3):e393-9–e399. doi: 10.1016/j.clbc.2017.07.013.
  • Jha PK, Ansari MA, Srivastava V, et al. Triple negative breast cancer: alarming burden and future challenges in Indian perspective. JSR. 2020;64(02):126–130. doi: 10.37398/JSR.2020.640217.
  • Akhtar M, Dasgupta S, Rangwala M. Triple negative breast cancer: an indian perspective. Breast Cancer (Dove Med Press). 2015;7:239–243. doi: 10.2147/BCTT.S85442.
  • Kulkarni A, Kelkar DA, Parikh N, et al. Meta-analysis of prevalence of triple-negative breast cancer and its clinical features at incidence in Indian patients with breast cancer. J Clin Oncol Glob Oncol. 2020; 6:1052–1062. doi: 10.1200/go.20.00054.
  • Sandhu GS, Erqou S, Patterson H, et al. Prevalence of triple-negative breast cancer in India: systematic review and meta-analysis. J Glob Oncol. 2016;2(6):412–421. doi: 10.1200/jgo.2016.005397.
  • Xiao Y, Ma D, Yang YS, et al. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res. 2022;32(5):477–490. doi: 10.1038/s41422-022-00614-0.
  • Derakhshan F, Reis-Filho JS. Pathogenesis of triple-negative breast cancer. Annu Rev Pathol. 2021;17(1):181–204. doi: 10.1146/annurev-pathol-042420-093238.
  • Shaikh SS, Emens LA. Current and emerging biologic therapies for triple negative breast cancer. Expert Opin Biol Ther. 2022;22(5):591–602. doi: 10.1080/14712598.2020.1801627.
  • Elias AD. Triple-negative breast cancer: a short review. Am J Clin Oncol. 2010;33(6):637–645. doi: 10.1097/COC.0b013e3181b8afcf.
  • Nilendu P, Kumar A, Kumar A, et al. Breast cancer stem cells as last soldiers eluding therapeutic burn: a hard nut to crack. Int J Cancer. 2018;142(1):7–17. doi: 10.1002/ijc.30898.
  • Tong CWS, Wu M, Cho WCS, et al. Recent advances in the treatment of breast cancer. Front Oncol. 2018;8:227. doi: 10.3389/fonc.2018.00227.
  • Łazarczyk M, Matyja E, Lipkowski A. Substance P and its receptors—a potential target for novel medicines in malignant brain tumour therapies (mini-review). Folia Neuropathol. 2007;45(3):99–107.
  • Muñoz M, Coveñas R. Involvement of substance P and the NK-1 receptor in human pathology. Amino Acids. 2014;46(7):1727–1750. doi: 10.1007/s00726-014-1736-9.
  • Ghahremanloo A, Mohammadi F, Hashemy SI. The role of substance P in neurodegenerative diseases. ACTA. 2020;58(7):301–309. doi: 10.18502/acta.v58i7.4416.
  • Schwarz MJ, Ackenheil M. The role of substance P in depression: therapeutic implications. Dialogues Clin Neurosci. 2002;4(1):21–29. doi: 10.31887/DCNS.2002.4.1/mschwarz.
  • Ebner K, Singewald N. The role of substance P in stress and anxiety responses. Amino Acids. 2006;31(3):251–272. doi: 10.1007/s00726-006-0335-9.
  • Iftikhar K, Siddiq A, Baig SG, et al. Substance P: a neuropeptide involved in the psychopathology of anxiety disorders. Neuropeptides. 2020;79:101993. doi: 10.1016/j.npep.2019.101993.
  • Schank JR. Neurokinin receptors in drug and alcohol addiction. Brain Res. 2020;1734:146729. doi: 10.1016/j.brainres.2020.146729.
  • Suvas S. Role of substance P neuropeptide in inflammation, wound healing, and tissue homeostasis. J Immunol. 2017;199(5):1543–1552. doi: 10.4049/jimmunol.1601751.
  • Zieglgänsberger W. Substance P and pain chronicity. Cell Tissue Res. 2019;375(1):227–241. doi: 10.1007/s00441-018-2922-y.
  • Park HS, Won HS, An HJ, et al. Elevated serum substance P level as a predictive marker for moderately emetogenic chemotherapy-induced nausea and vomiting: a prospective cohort study. Cancer Med. 2021;10(3):1057–1065. doi: 10.1002/cam4.3693.
  • Zhou Y, Zhao L, Xiong T, et al. Roles of full-length and truncated neurokinin-1 receptors on tumor progression and distant metastasis in human breast cancer. Breast Cancer Res Treat. 2013;140(1):49–61. doi: 10.1007/s10549-013-2599-6.
  • Spitsin S, Pappa V, Douglas SD. Truncation of neurokinin-1 receptor—negative regulation of substance P signaling. J Leukoc Biol. 2018;103(6):1043–1051. doi: 10.1002/JLB.3MIR0817-348R.
  • Singh D, Joshi DD, Hameed M, et al. Increased expression of preprotachykinin-I and neurokinin receptors in human breast cancer cells: implications for bone marrow metastasis. Proc Natl Acad Sci USA. 2000;97(1):388–393. doi: 10.1073/pnas.97.1.388.
  • Al-Keilani MS, Elstaty RI, Alqudah MA, et al. Immunohistochemical expression of substance P in breast cancer and its association with prognostic parameters and Ki-67 index. PLoS ONE. 2021;16(6):e0252616. doi: 10.1371/journal.pone.0252616.
  • Muñoz M, Rosso M, Coveñas R. The NK-1 receptor: a new target in cancer therapy. Curr Drug Targets. 2011;12(6):909–921. doi: 10.2174/138945011795528796.
  • Munoz M, Rosso M, Covenas R. A new frontier in the treatment of cancer: NK-1 receptor antagonists. CMC. 2010;17(6):504–516. doi: 10.2174/092986710790416308.
  • Muñoz M, Rosso M. The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Invest New Drugs. 2010;28(2):187–193. doi: 10.1007/s10637-009-9218-8.
  • Muñoz M, Coveñas R. Involvement of substance P and the NK-1 receptor in cancer progression. Peptides (N.Y.). 2013;48:1–9. doi: 10.1016/j.peptides.2013.07.024.
  • Munoz M, Covenas R, Esteban F, et al. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J Biosci. 2015;40(2):441–463. doi: 10.1007/s12038-015-9530-8.
  • Davoodian M, Boroumand N, Mehrabi Bahar M, et al. Evaluation of serum level of substance P and tissue distribution of NK-1 receptor in breast cancer. Mol Biol Rep. 2019;46(1):1285–1293. doi: 10.1007/s11033-019-04599-9.
  • Muñoz M, González-Ortega A, Salinas-Martín MV, et al. The neurokinin-1 receptor antagonist aprepitant is a promising candidate for the treatment of breast cancer. Int J Oncol. 2014;45(4):1658–1672. doi: 10.3892/ijo.2014.2565.
  • Lee M. Prolonged use of aprepitant in metastatic breast cancer and a reduction in CA153 tumour marker levels. Int J Cancer Clin Res. 2016;3(6):1–2. doi: 10.23937/2378-3419/3/6/1071.
  • Nizam E, Erin N. Differential consequences of neurokinin receptor 1 and 2 antagonists in metastatic breast carcinoma cells; effects independent of substance P. Biomed Pharmacother. 2018;108:263–270. doi: 10.1016/j.biopha.2018.09.013.
  • Huang W-Q, Wang J-G, Chen L, et al. SR140333 counteracts NK-1 mediated cell proliferation in human breast cancer cell line T47D. J Exp Clin Cancer Res. 2010;29(1):1–7. doi: 10.1186/1756-9966-29-55.
  • Mayuri M, Krishnamurthy PT, Vijayakumar TM. NK1 receptor antagonistic effect of 17-trifluoromethyl phenyl trinor prostaglandin F2α on the growth of human breast cancer cell line. Exp Mol Pathol. 2022;127:104817. doi: 10.1016/j.yexmp.2022.104817.
  • Hashemi Goradel N, Najafi M, Salehi E, et al. Cyclooxygenase-2 in cancer: a review. J Cell Physiol. 2019;234(5):5683–5699. doi: 10.1002/jcp.27411.
  • Claria J. Cyclooxygenase-2 biology. CPD. 2003;9(27):2177–2190. doi: 10.2174/1381612033454054.
  • Turini ME, DuBois RN. Cyclooxygenase-2: a therapeutic target. Annu Rev Med. 2002;53(1):35–57. doi: 10.1146/annurev.med.53.082901.103952.
  • Liszcz-Tymoszuk A, Fudalej M, Deptała A, et al. Cyclooxygenase-2 and bcl-2 expression in patients with triple-negative breast cancer. Nowotwory Journal of Oncology. 2022;72(4):211–218. doi: 10.5603/NJO.a2022.0035.
  • Tian J, Wang V, Wang N, et al. Identification of MFGE8 and KLK5/7 as mediators of breast tumorigenesis and resistance to COX-2 inhibition. Breast Cancer Res. 2021;23(1):23. doi: 10.1186/s13058-021-01401-2.
  • Regulski M, Regulska K, Prukała W, et al. COX-2 inhibitors: a novel strategy in the management of breast cancer. Drug Discov Today. 2016;21(4):598–615. doi: 10.1016/j.drudis.2015.12.003.
  • Mosalpuria K, Hall C, Krishnamurthy S, et al. Cyclooxygenase-2 expression in non-metastatic triple-negative breast cancer patients. Mol Clin Oncol. 2014;2(5):845–850. doi: 10.3892/mco.2014.327.
  • Capone ML, Tacconelli S, Sciulli MG, et al. Clinical pharmacology of selective COX-2 inhibitors. Int J Immunopathol Pharmacol. 2003;16:49–58.
  • Falandry C, Canney PA, Freyer G, et al. Role of combination therapy with aromatase and cyclooxygenase-2 inhibitors in patients with metastatic breast cancer. Ann Oncol. 2009;20(4):615–620. doi: 10.1093/annonc/mdn693.
  • Tian J, Hachim MY, Hachim IY, et al. Cyclooxygenase-2 regulates TGFβ-induced cancer stemness in triple-negative breast cancer. Sci Rep. 2017;7(1):40258. doi: 10.1038/srep40258.
  • Bell CR, Zelenay S. COX-2 upregulation by tumour cells post-chemotherapy fuels the immune evasive dark side of cancer inflammation. Cell Stress. 2022;6(9):76–78. doi: 10.15698/cst2022.09.271.
  • Lu Y-C, Chen P-T, Lin M-C, et al. Nonsteroidal anti-inflammatory drugs reduce second cancer risk in patients with breast cancer: a nationwide population-based propensity score-matched cohort study in Taiwan. Front Oncol. 2021;11:756143. doi: 10.3389/fonc.2021.756143.
  • Pierga J-Y, Delaloge S, Espié M, et al. A multicenter randomized phase II study of sequential epirubicin/cyclophosphamide followed by docetaxel with or without celecoxib or trastuzumab according to HER2 status, as primary chemotherapy for localized invasive breast cancer patients. Breast Cancer Res Treat. 2010;122(2):429–437. doi: 10.1007/s10549-010-0939-3.
  • Orendáš P, Ahlers I, Kubatka P, et al. Etoricoxib in the prevention of rat mammary carcinogenesis. Acta Vet Brno. 2007;76(4):613–618. doi: 10.2754/avb200776040613.
  • Coombes RC, Tovey H, Kilburn L, et al. Effect of celecoxib vs placebo as adjuvant therapy on disease-free survival among patients with breast cancer. JAMA Oncol. 2021;7(9):1291–1301. doi: 10.1001/jamaoncol.2021.2193.
  • Al Bostami RD, Abuwatfa WH, Husseini GA. Recent advances in nanoparticle-based co-delivery systems for cancer therapy. Nanomaterials (Basel). 2022;12(15):2672. doi: 10.3390/nano12152672.
  • Ma L, Kohli M, Smith A. Nanoparticles for combination drug therapy. ACS Nano. 2013;7(11):9518–9525. doi: 10.1021/nn405674m.
  • Muntimadugu E, Kumar R, Saladi S, et al. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B Biointerfaces. 2016;143:532–546. doi: 10.1016/j.colsurfb.2016.03.075.
  • Nabil G, Alzhrani R, Alsaab H, et al. CD44 targeted nanomaterials for treatment of triple-negative breast cancer. Cancers (Basel). 2021;13(4):898. doi: 10.3390/cancers13040898.
  • Li W, Ma H, Zhang J, et al. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep. 2017;7(1):13856. doi: 10.1038/s41598-017-14364-2.
  • Kim SJ, Owen SC. Hyaluronic acid binding to CD44S is indiscriminate of molecular weight. Biochim Biophys Acta Biomembr. 2020;1862(9):183348. doi: 10.1016/j.bbamem.2020.183348.
  • Wang X, Liu Y, Wang S, et al. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer. Appl Surf Sci. 2015;332:308–317. doi: 10.1016/j.apsusc.2015.01.204.
  • Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK, et al. Nanocarrier based approaches for targeting breast cancer stem cells. Artif Cells Nanomed Biotechnol. 2018;46(5):885–898. doi: 10.1080/21691401.2017.1366337.
  • Ebrahimi S, Javid H, Alaei A, et al. New insight into the role of substance P/neurokinin-1 receptor system in breast cancer progression and its crosstalk with microRNAs. Clin Genet. 2020;98(4):322–330. doi: 10.1111/cge.13750.
  • Esteban F, Muñoz M, González-Moles MA, et al. A role for substance P in cancer promotion and progression: a mechanism to counteract intracellular death signals following oncogene activation or DNA damage. Cancer Metastasis Rev. 2006;25(1):137–145. doi: 10.1007/s10555-006-8161-9.
  • Zhou L, Li K, Luo Y, et al. Novel prognostic markers for patients with triple-negative breast cancer. Hum Pathol. 2013;44(10):2180–2187. doi: 10.1016/j.humpath.2013.03.021.
  • Shim JY, An HJ, Lee YH, et al. Overexpression of cyclooxygenase-2 is associated with breast carcinoma and its poor prognostic factors. Mod Pathol. 2003;16(12):1199–1204. doi: 10.1097/01.MP.0000097372.73582.CB.
  • Esbona K, Inman D, Saha S, et al. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 2016;18(1):35. doi: 10.1186/s13058-016-0695-3.
  • Bhutani N, Moga S, Poswal P, et al. COX-2 expression in carcinoma of the breast and surrounding non-neoplastic breast tissue. Arch Breast Cancer. 2021; 8:29–36. doi: 10.32768/abc.20218129-36.
  • Minisini AM, Fabbro D, di Loreto C, et al. Markers of the uPA system and common prognostic factors in breast cancer. Am J Clin Pathol. 2007;128(1):112–117. doi: 10.1309/M0GXVXA89BVLJ5C9.
  • Nassar MIA, Bebars SMM, Said RMS, et al. Immunohistochemical expression of cyclooxygenase-2 (COX-2) in breast cancer. Egypt J Hosp Med. 2019;75(3):2397–2405. doi: 10.21608/ejhm.2019.30955.
  • Pu D, Yin L, Huang L, et al. Cyclooxygenase-2 inhibitor: a potential combination strategy with immunotherapy in cancer. Front Oncol. 2021;11:637504. doi: 10.3389/fonc.2021.637504.
  • Howe LR. Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res. 2007;9(4):210. doi: 10.1186/bcr1678.
  • Mehboob R, Gilani SA, Hassan A, et al. Prognostic significance of substance P/neurokinin 1 receptor and its association with hormonal receptors in breast carcinoma. Biomed Res Int. 2021;2021:5577820. doi: 10.1155/2021/5577820.
  • Bigioni M, Benzo A, Irrissuto C, et al. Role of NK-1 and NK-2 tachykinin receptor antagonism on the growth of human breast carcinoma cell line MDA-MB-231. Anticancer Drugs. 2005;16(10):1083–1089. doi: 10.1097/00001813-200511000-00007.
  • Mayordomo C, García-Recio S, Ametller E, et al. Targeting of substance P induces cancer cell death and decreases the steady state of EGFR and Her2. J Cell Physiol. 2012;227(4):1358–1366. doi: 10.1002/jcp.22848.
  • Huang W-Q, Wang J-G, Chen L, et al. SR140333 counteracts NK-1 mediated cell proliferation in human breast cancer cell line T47D. J Exp Clin Cancer Res. 2010;29(1):55. doi: 10.1186/1756-9966-29-55.
  • Zhang L, Wang L, Dong D, et al. MiR-34b/c-5p and the neurokinin-1 receptor regulate breast cancer cell proliferation and apoptosis. Cell Prolif. 2019;52(1):e12527. doi: 10.1111/cpr.12527.
  • Mayuri M, Vijayakumar TM. A comprehensive review on neurokinin-1 receptor antagonism in breast cancer. J Appl Pharm Sci. 2021;11:009–014. doi: 10.7324/JAPS.2021.110502.
  • Xu Y, Gu Q, Tang J, et al. Substance P attenuates hypoxia/reoxygenation-induced apoptosis via the akt signalling pathway and the NK1-receptor in H9C2Cells. Heart Lung Circ. 2018;27(12):1498–1506. doi: 10.1016/j.hlc.2017.09.013.
  • Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int. 2015;15(1):106. doi: 10.1186/s12935-015-0260-7.
  • Rath N, Olson MF. Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep. 2012;13(10):900–908. doi: 10.1038/embor.2012.127.
  • Pereira De Carvalho B, Chern YJ, He J, et al. The ubiquitin ligase RNF8 regulates rho GTPases and promotes cytoskeletal changes and motility in triple-negative breast cancer cells. FEBS Lett. 2021;595(2):241–252. doi: 10.1002/1873-3468.13999.
  • Momen Razmgah M, Ghahremanloo A, Javid H, et al. The effect of substance P and its specific antagonist (aprepitant) on the expression of MMP-2, MMP-9, VEGF, and VEGFR in ovarian cancer cells. Mol Biol Rep. 2022;49(10):9307–9314. doi: 10.1007/s11033-022-07771-w.
  • Liu N, Liu D, Li Y, et al. Effects and mechanisms of substance P on the proliferation and angiogenic differentiation of bone marrow mesenchymal stem cells: bioinformatics and in vitro experiments. Genomics. 2023;115(5):110679. doi: 10.1016/j.ygeno.2023.110679.
  • Alanazi IO, Khan Z. Understanding EGFR signaling in breast cancer and breast cancer stem cells: overexpression and therapeutic implications. Asian Pac J Cancer Prev. 2016;17(2):445–453. doi: 10.7314/APJCP.2016.17.2.445.
  • D’Angelo RC, Ouzounova M, Davis A, et al. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity. Mol Cancer Ther. 2015;14(3):779–787. doi: 10.1158/1535-7163.MCT-14-0228.
  • Scioli MG, Storti G, D’Amico F, et al. The role of breast cancer stem cells as a prognostic marker and a target to improve the efficacy of breast cancer therapy. Cancers (Basel). 2019;11(7):1021. doi: 10.3390/cancers11071021.
  • Van Amerongen R, Bowman AN, Nusse R. Developmental stage and time dictate the fate of wnt/β-catenin- responsive stem cells in the mammary gland. Cell Stem Cell. 2012;11(3):387–400. doi: 10.1016/j.stem.2012.05.023.
  • Khramtsov AI, Khramtsova GF, Tretiakova M, et al. Wnt/β-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol. 2010;176(6):2911–2920. doi: 10.2353/ajpath.2010.091125.
  • Wang JG, Yu J, Hu JL, et al. Neurokinin-1 activation affects EGFR related signal transduction in triple negative breast cancer. Cell Signal. 2015;27(7):1315–1324. doi: 10.1016/j.cellsig.2015.03.015.
  • Muñoz M, Rosso M, Coveñas R. Triple negative breast cancer: how neurokinin-1 receptor antagonists could be used as a new therapeutic approach. Mini Rev Med Chem. 2020;20(5):408–417. doi: 10.2174/1389557519666191112152642.
  • Alikanoglu AS, Yildirim M, Suren D, et al. Expression of cyclooxygenase-2 and bcl-2 in breast cancer and their relationship with triple-negative disease. J Buon. 2014;1919:430–434.
  • Al-Keilani MS, Elstaty R, Alqudah MA. and MAA. The prognostic potential of neurokinin 1 receptor in breast cancer and its relationship with Ki-67 index. Int J Breast Cancer. 2022;2022:4987912. doi: 10.1155/2022/4987912.
  • Liu XH, Rose DP. Differential expression and regulation of cyclooxygenase-1 and -2 in two human breast cancer cell lines. Cancer Res. 1996;56(22):5125–5127.
  • Al-Keilani MS, Bdeir R, Elstaty RI, et al. Expression of substance P, neurokinin 1 receptor, Ki-67 and pyruvate kinase M2 in hormone receptor negative breast cancer and evaluation of impact on overall survival. BMC Cancer. 2023;23(1):158.,. doi: 10.1186/s12885-023-10633-8.
  • Rao G, Patel PS, Idler SP, et al. Facilitating role of preprotachykinin-I gene in the integration of breast cancer cells within the stromal compartment of the bone marrow: a model of early cancer progression. Cancer Res. 2004;64(8):2874–2881. doi: 10.1158/0008-5472.CAN-03-3121.
  • Fan TD, Hu D-E, Guard S, et al. Stimulation of angiogenesis by substance P and interleukin-1 in the rat and its inhibition by NK1 or interleukin-1 receptor antagonists. Br J Pharmacol. 1993;110(1):43–49. doi: 10.1111/j.1476-5381.1993.tb13769.x.
  • Lang K, Drell IT, Lindecke A, et al. Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int J Cancer. 2004;112(2):231–238. doi: 10.1002/ijc.20410.
  • Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008;454(7203):436–444. doi: 10.1038/nature07205.
  • Bissanum R, Kamolphiwong R, Navakanitworakul R, et al. Integrated bioinformatic analysis of potential biomarkers of poor prognosis in triple-negative breast cancer. Transl Cancer Res. 2022;11(9):3039–3049. doi: 10.21037/tcr-22-662.
  • Basu GD, Pathangey LB, Tinder TL, et al. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res. 2005;7(4):R422–R435. doi: 10.1186/bcr1019.
  • Larkins TL, Nowell M, Singh S, et al. Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression. BMC Cancer. 2006;6(1):1–12. doi: 10.1186/1471-2407-6-181.
  • Wang G-P, Chen Y, An B-L, et al. COX-2 expression correlation with invasion in human breast carcinomas and in cell line MDA-MB-231 in vitro. Bangladesh J Pharmacol. 2016;11: s 43–S54. doi: 10.3329/bjp.v11iS1.25639.
  • Pang LY, Hurst EA, Argyle DJ. Cyclooxygenase-2: a role in cancer stem cell survival and repopulation of cancer cells during therapy. Stem Cells Int. 2016;2016:2048731–11. doi: 10.1155/2016/2048731.
  • Gallyas F, Ramadan FHJ, Andreidesz K, et al. Involvement of mitochondrial mechanisms and cyclooxygenase-2 activation in the effect of desethylamiodarone on 4T1 triple-negative breast cancer line. Int J Mol Sci. 2022;23(3):1544. doi: 10.3390/ijms23031544.
  • Huang C, Chen Y, Liu H, et al. Celecoxib targets breast cancer stem cells by inhibiting the synthesis of prostaglandin E2 and down-regulating the wnt pathway activity. Oncotarget. 2017;8(70):115254–115269. doi: 10.18632/oncotarget.23250.
  • Zeinali M, Abbaspour-Ravasjani S, Ghorbani M, et al. Nanovehicles for co-delivery of anticancer agents. Drug Discov Today. 2020;25(8):1416–1430. doi: 10.1016/j.drudis.2020.06.027.
  • Hafeez MN, Celia C, Petrikaite V. Challenges towards targeted drug delivery in cancer nanomedicines. Processes. 2021;9(9):1527. doi: 10.3390/pr9091527.
  • Miao L, Guo S, Zhang J, et al. Nanoparticles with precise ratiometric Co--loading and Co-delivery of gemcitabine monophosphate and cisplatin for treatment of bladder cancer. Adv Funct Mater. 2014;24(42):6601–6611. doi: 10.1002/adfm.201401076.
  • El Hassouni B, Mantini G, Li Petri G, et al. To combine or not combine: drug interactions and tools for their analysis. Reflections from the EORTC-PAMM course on preclinical and early-phase clinical pharmacology. Anticancer Res. 2019;39(7):3303–3309. doi: 10.21873/anticanres.13472.
  • Gao Q, Feng J, Liu W, et al. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev. 2022;188:114445. doi: 10.1016/j.addr.2022.114445.
  • Subhan MA, Parveen F, Shah H, et al. Recent advances with precision medicine treatment for breast cancer including triple-negative sub-type. Cancers (Basel). 2023;15(8):2204. doi: 10.3390/cancers15082204.
  • Capici S, Ammoni LC, Meli N, et al. Personalised therapies for metastatic triple-negative breast cancer: when target is not everything. Cancers (Basel). 2022;14(15):3729. doi: 10.3390/cancers14153729.
  • Hossain F, Majumder S, David J, et al. Precision medicine and triple-negative breast cancer: current landscape and future directions. Cancers (Basel). 2021;13(15):3739. doi: 10.3390/cancers13153739.
  • Kumari M, Acharya A, Krishnamurthy PT. Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics. Beilstein J Nanotechnol. 2023;14:912–926. doi: 10.3762/bjnano.14.75.
  • Juan A, Cimas FJ, Bravo I, et al. Antibody conjugation of nanoparticles as therapeutics for breast cancer treatment. Int J Mol Sci. 2020;21(17):6018. doi: 10.3390/ijms21176018.
  • Pindiprolu SKSS, Krishnamurthy PT, Dev C, et al. DR5 antibody conjugated lipid-based nanocarriers of gamma-secretase inhibitor for the treatment of triple negative breast cancer. Chem Phys Lipids. 2021;235:105033. doi: 10.1016/j.chemphyslip.2020.105033.
  • Chavez KJ, Garimella SV, Lipkowitz S. Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis. 2010;32(1–2):35–48. doi: 10.3233/BD-2010-0307.
  • Kaur P, Nagaraja GM, Zheng H, et al. A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease. BMC Cancer. 2012;12(1):1–12. doi: 10.1186/1471-2407-12-120.
  • Mutukuru M, Vijayakumar TM. Substance P/NK1R antagonistic effect of 17-trifluoromethyl phenyl trinor prostaglandin F2α in breast cancer. Int J Pept Res Ther. 2022;28(3):102. doi: 10.1007/s10989-022-10410-4.
  • Zhou Y, Zuo D, Wang M, et al. Effect of truncated neurokinin-1 receptor expression changes on the interaction between human breast cancer and bone marrow-derived mesenchymal stem cells. Genes to Cells. 2014;19(9):676–691. doi: 10.1111/gtc.12168.
  • Dai Z-J, Ma X-B, Kang H-F, et al. Antitumor activity of the selective cyclooxygenase-2 inhibitor, celecoxib, on breast cancer in vitro and in vivo. Cancer Cell Int. 2012;12(1):53. doi: 10.1186/1475-2867-12-53.
  • Miller ME, Holloway AC, Foster WG. Benzo-[a]-pyrene increases invasion in MDA-MB-231 breast cancer cells via increased COX-II expression and prostaglandin E2 (PGE2) output. Clin Exp Metastasis. 2005;22(2):149–156. doi: 10.1007/s10585-005-6536-x.
  • Bardaweel SK, Dahabiyeh LA, Akileh BM, et al. Molecular and metabolomic investigation of celecoxib antiproliferative activity in mono- and combination therapy against breast cancer cell models. Anticancer Agents Med Chem. 2022;22(8):1611–1621. doi: 10.2174/1871520621666210910101349.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.