145
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Artificial intelligence for skin permeability prediction: deep learning

&
Pages 334-346 | Received 01 Dec 2023, Accepted 07 Jan 2024, Published online: 01 Feb 2024

References

  • Mohammad-Rahimi H, Rokhshad R, Bencharit S, et al. Deep learning: a primer for dentists and dental researchers. J Dent. 2023;130:104430. doi: 10.1016/j.jdent.2023.104430.
  • Kumar M, Kumar D, Garg Y, et al. Marine-derived polysaccharides and their therapeutic potential in wound healing application – a review. Int J Biol Macromol. 2023;253(Pt 6):127331. doi: 10.1016/j.ijbiomac.2023.127331.
  • Kumar M, Keshwania P, Chopra S, et al. Therapeutic potential of nanocarrier-mediated delivery of phytoconstituents for wound healing: their current status and future perspective. AAPS PharmSciTech. 2023;24(6):155. doi: 10.1208/s12249-023-02616-6.
  • Kumar M, Hilles AR, Ge Y, et al. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: their current status with regulatory perspective. Int J Biol Macromol. 2023;234:123696. doi: 10.1016/j.ijbiomac.2023.123696.
  • Oliveira R, Bollen MHJ. Deep learning for power quality. Electr Power Syst Res. 2023;214:108887. doi: 10.1016/j.epsr.2022.108887.
  • Ita K, Prinze J. Machine learning for skin permeability prediction: random forest and XG boost regression. J Drug Target. 32(1):57–65. doi: 10.1080/1061186X.2023.2284096.
  • Laudani A, Lozito GM, Riganti Fulginei F, et al. On training efficiency and computational costs of a feed forward neural network: a review. Comput Intell Neurosci. 2015;2015:818243–818213. doi: 10.1155/2015/818243.
  • Tian Y, Liu M, Sun Y, et al. When liver disease diagnosis encounters deep learning: analysis, challenges, and prospects. iLIVER. 2023;2(1):73–87. doi: 10.1016/j.iliver.2023.02.002.
  • Xu Q, Huang X, Zhang B, et al. TBM performance prediction using LSTM-based hybrid neural network model: case study of Baimang river tunnel project in Shenzhen, China. Underground Space. 2023;11:130–152. doi: 10.1016/j.undsp.2022.11.002.
  • Kumar M, Pannu S, Kant S. Artificial neural network (ANN) and its applications in the field of pharmacy with a special focus on pharmaceutical product development: a recent review. JASR. 2021;12(4 Suppl 1):28–38. doi: 10.55218/JASR.s1202112404.
  • Mohammed A, Kora R. A comprehensive review on ensemble deep learning: opportunities and challenges. J King Saud Univ Comput Inform Sci. 2023;35(2):757–774. doi: 10.1016/j.jksuci.2023.01.014.
  • Li Z, Gao E, Zhou J, et al. Applications of deep learning in understanding gene regulation. Cell Rep Methods. 2023;3(1):100384. doi: 10.1016/j.crmeth.2022.100384.
  • Cordeiro-Costas M, Villanueva D, Eguía-Oller P, et al. Intelligent energy storage management trade-off system applied to deep learning predictions. J Storage Mater. 2023;61:106784. doi: 10.1016/j.est.2023.106784.
  • Zhu Y, Wang M, Yin X, et al. Deep learning in diverse intelligent sensor based systems. Sensors. 2022;23(1):62. doi: 10.3390/s23010062.
  • Ita K, Silva M, Bassey R. Mechanical properties of the skin: what do we know? COSCI. 2022;1(1):70–76. doi: 10.2174/2666779701666220107161901.
  • Pecoraro B, Tutone M, Hoffman E, et al. Predicting skin permeability by means of computational approaches: reliability and caveats in pharmaceutical studies. J Chem Inf Model. 2019;59(5):1759–1771. doi: 10.1021/acs.jcim.8b00934.
  • Kumar M, Sharma A, Mahmood S, et al. Franz diffusion cell and its implication in skin permeation studies. J Dispersion Sci Technol. 2023:1–14. doi: 10.1080/01932691.2023.2188923.
  • Waters LJ, Quah XL. Predicting skin permeability using HuskinDB. Sci Data. 2022;9(1):584. doi: 10.1038/s41597-022-01698-4.
  • Chen L, Han L, Lian G. Recent advances in predicting skin permeability of hydrophilic solutes. Adv Drug Deliv Rev. 2013;65(2):295–305. doi: 10.1016/j.addr.2012.05.001.
  • Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9(5):663–669. doi: 10.1023/a:1015810312465.
  • Stepanov D, Canipa S, Wolber G. HuskinDB, a database for skin permeation of xenobiotics. Sci Data. 2020;7(1):426. doi: 10.1038/s41597-020-00764-z.
  • Cheruvu HS, Liu X, Grice JE, et al. An updated database of human maximum skin fluxes and epidermal permeability coefficients for drugs, xenobiotics, and other solutes applied as aqueous solutions. Data Brief. 2022;42:108242. doi: 10.1016/j.dib.2022.108242.
  • Yuan Y, Han Y, Yap CW, et al. Prediction of drug permeation through microneedled skin by machine learning. Bioeng Transl Med. 2023;8(6):e10512. doi: 10.1002/btm2.10512.
  • Magnusson BM, Anissimov YG, Cross SE, et al. Molecular size as the main determinant of solute maximum flux across the skin. J Invest Dermatol. 2004;122(4):993–999. doi: 10.1111/j.0022-202X.2004.22413.x.
  • Roberts MS, Cheruvu HS, Mangion SE, et al. Topical drug delivery: history, percutaneous absorption, and product development. Adv Drug Deliv Rev. 2021;177:113929. doi: 10.1016/j.addr.2021.113929.
  • Yamashita R, Nishio M, Do RKG, et al. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611–629. doi: 10.1007/s13244-018-0639-9.
  • Montesinos López OA, Montesinos López A, Crossa J. Fundamentals of artificial neural networks and deep learning. In: Montesinos López OA, Montesinos López A, Crossa J, editors. Multivariate statistical machine learning methods for genomic prediction. Cham: Springer International Publishing; 2022. p. 379–425.
  • Rajput DS, Meena G, Acharya M, et al. Fault prediction using fuzzy convolution neural network on IoT environment with heterogeneous sensing data fusion. Measurement. 2023;26:100701. doi: 10.1016/j.measen.2023.100701.
  • Zhang H, Feng L, Zhang X, et al. Necessary conditions for convergence of CNNs and initialization of convolution kernels. Digital Signal Process. 2022;123:103397. doi: 10.1016/j.dsp.2022.103397.
  • Paul T, Hassan O, Alaboud K, et al. ECG and SpO(2) signal-based real-time sleep apnea detection using feed-forward artificial neural network. AMIA Annu Symp Proc. 2022;2022:379–385.
  • Krishnan S, Hendriks HFJ, Hartvigsen ML, et al. Feed-forward neural network model for hunger and satiety related VAS score prediction. Theor Biol Med Model. 2016;13(1):17. doi: 10.1186/s12976-016-0043-4.
  • Gayathri JL, Abraham B, Sujarani MS, et al. A computer-aided diagnosis system for the classification of COVID-19 and non-COVID-19 pneumonia on chest X-ray images by integrating CNN with sparse autoencoder and feed forward neural network. Comput Biol Med. 2022;141:105134.
  • Gheisari S, Shariflou S, Phu J, et al. A combined convolutional and recurrent neural network for enhanced glaucoma detection. Sci Rep. 2021;11(1):1945. doi: 10.1038/s41598-021-81554-4.
  • Kunc V, Kléma J. On transformative adaptive activation functions in neural networks for gene expression inference. PLOS One. 2021;16(1):e0243915. doi: 10.1371/journal.pone.0243915.
  • Kriegeskorte N, Golan T. Neural network models and deep learning. Curr Biol. 2019;29(7):R231–R236. doi: 10.1016/j.cub.2019.02.034.
  • Xu M, Liu W, Xu J, et al. Recurrent neural network based link quality prediction for fluctuating low power wireless links. Sensors. 2022;22(3):1212. doi: 10.3390/s22031212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.