121
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Therapeutic and diagnostic applications of carbon nanotubes in cancer: recent advances and challenges

, , &
Pages 287-299 | Received 07 Oct 2023, Accepted 11 Jan 2024, Published online: 01 Feb 2024

References

  • He H, Pham-Huy LA, Dramou P, et al. Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int. 2013;2013:578290. doi: 10.1155/2013/578290.
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9(6):674–679. doi: 10.1016/j.cbpa.2005.10.005.
  • Cheriyamundath S, Vavilala SL. Nanotechnology-based wastewater treatment. Water Environ J. 2021;35(1):123–132. doi: 10.1111/wej.12610.
  • Karimi M, Solati N, Amiri M, et al. Carbon nanotubes. Part I: preparation of a novel and versatile drug-delivery vehicle. Expert Opin Drug Deliv. 2015;12(7):1071–1087. doi: 10.1517/17425247.2015.1003806.
  • Zare H, Ahmadi S, Ghasemi A, et al. Carbon nanotubes: smart drug/gene delivery carriers. Int J Nanomedicine. 2021;16:1681–1706. doi: 10.2147/IJN.S299448.
  • Rahamathulla M, Bhosale RR, Osmani RAM, et al. Carbon nanotubes: current perspectives on diverse applications in targeted drug delivery and therapies. Materials. 2021;14(21):6707. doi: 10.3390/ma14216707.
  • Mann FA, Galonska P, Herrmann N, et al. Quantum defects as versatile anchors for carbon nanotube functionalization. Nat Protoc. 2022;17(3):727–747. doi: 10.1038/s41596-021-00663-6.
  • Taghdisi SM, Lavaee P, Ramezani M, et al. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm. 2011;77(2):200–206. doi: 10.1016/j.ejpb.2010.12.005.
  • Pennetta C, Floresta G, Graziano ACE, et al. Functionalization of single and multi-walled carbon nanotubes with polypropylene glycol decorated pyrrole for the development of doxorubicin nano-conveyors for cancer drug delivery. Nanomaterials. 2020;10(6):1073. doi: 10.3390/nano10061073.
  • Lee PC, Chiou YC, Wong JM, et al. Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials. 2013;34(34):8756–8765. doi: 10.1016/j.biomaterials.2013.07.067.
  • Bakirhan NK, Kaya SI, Jabbarov R, et al. The power of carbon nanotubes on sensitive drug determination methods. Crit Rev Anal Chem. 2023;53(2):374–383. doi: 10.1080/10408347.2021.1958296.
  • Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 2014;9(1):393. doi: 10.1186/1556-276X-9-393.
  • Shoukat R, Khan MI. Carbon nanotubes/nanofibers (CNTs/CNFs): a review on state of the art synthesis methods. Microsyst Technol. 2022;28(4):885–901. doi: 10.1007/s00542-022-05263-2.
  • Liu Q, Yang F, Zhang Y, et al. Selective growth of single-walled carbon nanotubes using cobalt disilicide. ChemNanoMat. 2022;8(4):e202200037. doi: 10.1002/cnma.202200037.
  • Manawi YM, Samara A, Al-Ansari T, et al. A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials. 2018;11(5):822. doi: 10.3390/ma11050822.
  • Esteves LM, Oliveira HA, Passos FB. Carbon nanotubes as catalyst support in chemical vapor deposition reaction: a review. J Ind Eng Chem. 2018;65:1–12. doi: 10.1016/j.jiec.2018.04.012.
  • Speranza G. Carbon nanomaterials: synthesis, functionalization and sensing applications. Nanomaterials. 2021;11(4):967. doi: 10.3390/nano11040967.
  • Venkataraman A, Amadi EV, Chen Y, et al. Carbon nanotube assembly and integration for applications. Nanoscale Res Lett. 2019;14(1):220. doi: 10.1186/s11671-019-3046-3.
  • Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011;6(1):555. doi: 10.1186/1556-276X-6-555.
  • Zhang Y, Bai Y, Yan B. Functionalized carbon nanotubes for potential medicinal applications. Drug Discov Today. 2010;15(11–12):428–435. doi: 10.1016/j.drudis.2010.04.005.
  • Kamińska K, Cudnoch-Jędrzejewska A. A review on the neurotoxic effects of doxorubicin. Neurotox Res. 2023;41(5):383–397. doi: 10.1007/s12640-023-00652-5.
  • Yin J, Li X, Li F, et al. Identification of the key target profiles underlying the drugs of narrow therapeutic index for treating cancer and cardiovascular disease. Comput Struct Biotechnol J. 2021;19:2318–2328. doi: 10.1016/j.csbj.2021.04.035.
  • Piccolo M, Misso G, Ferraro MG, et al. Exploring cellular uptake, accumulation and mechanism of action of a cationic Ru-based nanosystem in human preclinical models of breast cancer. Sci Rep. 2019;9(1):7006. doi: 10.1038/s41598-019-43411-3.
  • Elgamal HA, Mohamed SA, Farghali AA, et al. PEG@carbon nanotubes composite as an effective nanocarrier of ixazomib for myeloma cancer therapy. Nanoscale Res Lett. 2022;17(1):72. doi: 10.1186/s11671-022-03707-2.
  • Cifuentes-Rius A, Boase NRB, Font I, et al. In vivo fate of carbon nanotubes with different physicochemical properties for gene delivery applications. ACS Appl Mater Interfaces. 2017;9(13):11461–11471. doi: 10.1021/acsami.7b00677.
  • Yan Y, Wang R, Hu Y, et al. Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors. Drug Deliv. 2018;25(1):1607–1616. doi: 10.1080/10717544.2018.1501120.
  • Morais RP, Novais GB, Sangenito LS, et al. Naringenin-functionalized multi-walled carbon nanotubes: a potential approach for site-specific remote-controlled anticancer delivery for the treatment of lung cancer cells. Int J Mol Sci. 2020;21(12):4557. doi: 10.3390/ijms21124557.
  • Lu G-H, Shang W-T, Deng H, et al. Targeting carbon nanotubes based on IGF-1R for photothermal therapy of orthotopic pancreatic cancer guided by optical imaging. Biomaterials. 2019;195:13–22. doi: 10.1016/j.biomaterials.2018.12.025.
  • Nomura S, Morimoto Y, Tsujimoto H, et al. Highly reliable, targeted photothermal cancer therapy combined with thermal dosimetry using a near-infrared absorbent. Sci Rep. 2020;10(1):9765. doi: 10.1038/s41598-020-66646-x.
  • Santos T, Fang X, Chen M-T, et al. Sequential administration of carbon nanotubes and near-infrared radiation for the treatment of gliomas. Front Oncol. 2014;4:180. doi: 10.3389/fonc.2014.00180.
  • Burke A, Ding X, Singh R, et al. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci U S A. 2009;106(31):12897–12902. doi: 10.1073/pnas.0905195106.
  • Han HS, Choi KY. Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications. Biomedicines. 2021;9(3):305. doi: 10.3390/biomedicines9030305.
  • Srinivasan ES, Liu Y, Odion RA, et al. Gold nanostars obviate limitations to laser interstitial thermal therapy (LITT) for the treatment of intracranial tumors. Clin Cancer Res. 2023;29(16):3214–3224. doi: 10.1158/1078-0432.CCR-22-1871.
  • Suo X, Eldridge BN, Zhang H, et al. P-glycoprotein-targeted photothermal therapy of drug-resistant cancer cells using antibody-conjugated carbon nanotubes. ACS Appl Mater Interfaces. 2018;10(39):33464–33473. doi: 10.1021/acsami.8b11974.
  • Xiao Y, Gao X, Taratula O, et al. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer. 2009;9(1):351. doi: 10.1186/1471-2407-9-351.
  • Naief MF, Khalaf YH, Mohammed AM. Novel photothermal therapy using multi-walled carbon nanotubes and platinum nanocomposite for human prostate cancer PC3 cell line. J Organomet Chem. 2022;975:122422. doi: 10.1016/j.jorganchem.2022.122422.
  • Mosaddad SA, Namanloo RA, Aghili SS, et al. Photodynamic therapy in oral cancer: a review of clinical studies. Med Oncol. 2023;40(3):91. doi: 10.1007/s12032-023-01949-3.
  • Warszyńska M, Repetowski P, Dąbrowski JM. Photodynamic therapy combined with immunotherapy: recent advances and future research directions. Coord Chem Rev. 2023;495:215350. doi: 10.1016/j.ccr.2023.215350.
  • Sundaram P, Abrahamse H. Effective photodynamic therapy for colon cancer cells using chlorin e6 coated hyaluronic acid-based carbon nanotubes. Int J Mol Sci. 2020;21(13):4745. doi: 10.3390/ijms21134745.
  • Shi J, Ma R, Wang L, et al. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment. Int J Nanomedicine. 2013;8:2361–2373. doi: 10.2147/IJN.S45407.
  • Pio R, Ajona D, Ortiz-Espinosa S, et al. Complementing the cancer-immunity cycle. Front Immunol. 2019;10:774. doi: 10.3389/fimmu.2019.00774.
  • Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21(4):687–692. doi: 10.1158/1078-0432.CCR-14-1860.
  • Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(3):175–196. doi: 10.1038/s41573-018-0006-z.
  • Sun Q, Bai X, Sofias AM, et al. Cancer nanomedicine meets immunotherapy: opportunities and challenges. Acta Pharmacol Sin. 2020;41(7):954–958. doi: 10.1038/s41401-020-0448-9.
  • Zimmermannova O, Caiado I, Ferreira AG, et al. Cell fate reprogramming in the era of cancer immunotherapy. Front Immunol. 2021;12:714822. doi: 10.3389/fimmu.2021.714822.
  • Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–821. doi: 10.1038/s41423-020-0488-6.
  • Shi Y, Lammers T. Combining nanomedicine and immunotherapy. Acc Chem Res. 2019;52(6):1543–1554. doi: 10.1021/acs.accounts.9b00148.
  • Ahmed A, Tait SWG. Targeting immunogenic cell death in cancer. Mol Oncol. 2020;14(12):2994–3006. doi: 10.1002/1878-0261.12851.
  • Zhang L, Montesdeoca N, Karges J, et al. Immunogenic cell death inducing metal complexes for cancer therapy. Angew Chem Int Ed Engl. 2023;62(21):e202300662. doi: 10.1002/anie.202300662.
  • Li W, Yang J, Luo L, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun. 2019;10(1):3349. doi: 10.1038/s41467-019-11269-8.
  • Gupta G, Borglum K, Chen H. Immunogenic cell death: a step ahead of autophagy in cancer therapy. J Cancer Immunol. 2021;3(1):47–59.
  • Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–4566. doi: 10.1158/0008-5472.CAN-18-3962.
  • Lorenzo-Sanz L, Muñoz P. Tumor-infiltrating immunosuppressive cells in cancer-cell plasticity, tumor progression and therapy response. Cancer Microenviron. 2019;12(2–3):119–132. doi: 10.1007/s12307-019-00232-2.
  • Sacchetti C, Rapini N, Magrini A, et al. In vivo targeting of intratumor regulatory T cells using PEG-modified single-walled carbon nanotubes. Bioconjug Chem. 2013;24(6):852–858. doi: 10.1021/bc400070q.
  • Fadel TR, Sharp FA, Vudattu N, et al. A carbon nanotube-polymer composite for T-cell therapy. Nat Nanotechnol. 2014;9(8):639–647. doi: 10.1038/nnano.2014.154.
  • Parra J, Abad-Somovilla A, Mercader JV, et al. Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. J Control Release. 2013;170(2):242–251. doi: 10.1016/j.jconrel.2013.05.019.
  • Yenjerla M, LaPointe NE, Lopus M, et al. The neuroprotective peptide NAP does not directly affect polymerization or dynamics of reconstituted neural microtubules. J Alzheimers Dis. 2010;19(4):1377–1386. doi: 10.3233/JAD-2010-1335.
  • Davé RH, Saengsawang W, Lopus M, et al. A molecular and structural mechanism for G protein-mediated microtubule destabilization. J Biol Chem. 2011;286(6):4319–4328. doi: 10.1074/jbc.M110.196436.
  • Pradhan M, Suri C, Choudhary S, et al. Elucidation of the anticancer potential and tubulin isotype-specific interactions of β-sitosterol. J Biomol Struct Dyn. 2018;36(1):195–208. doi: 10.1080/07391102.2016.1271749.
  • Pradhan S, Mahaddalkar T, Choudhary S, et al. Elucidation of the tubulin-targeted mechanism of action of 9-(3-pyridyl) noscapine. Curr Top Med Chem. 2017;17(22):2569–2574.
  • Wilson L, Lopus M, Miller HP, et al. Effects of eribulin on microtubule binding and dynamic instability are strengthened in the absence of the βIII tubulin isotype. Biochemistry. 2015;54(42):6482–6489. doi: 10.1021/acs.biochem.5b00745.
  • Mahaddalkar T, Lopus M. From natural products to designer drugs: development and molecular mechanisms action of novel anti-microtubule breast cancer therapeutics. Curr Top Med Chem. 2017;17(22):2559–2568.
  • Chen C, Xie XX, Zhou Q, et al. EGF-functionalized single-walled carbon nanotubes for targeting delivery of etoposide. Nanotechnology. 2012;23(4):045104. doi: 10.1088/0957-4484/23/4/045104.
  • Nirmala JG, Rachineni K, Choudhary S, et al. Triphala polyphenols-functionalized gold nanoparticles impair cancer cell survival through induction of tubulin dysfunction. J Drug Deliv Sci Technol. 2021;61:102167. doi: 10.1016/j.jddst.2020.102167.
  • Hevia LG, Fanarraga ML. Microtubule cytoskeleton-disrupting activity of MWCNTs: applications in cancer treatment. J Nanobiotechnology. 2020;18(1):181. doi: 10.1186/s12951-020-00742-y.
  • Pampaloni F, Florin E-L. Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials. Trends Biotechnol. 2008;26(6):302–310. doi: 10.1016/j.tibtech.2008.03.002.
  • Dinu CZ, Bale SS, Zhu G, et al. Tubulin encapsulation of carbon nanotubes into functional hybrid assemblies. Small. 2009;5(3):310–315. doi: 10.1002/smll.200801434.
  • Chen Z, Zhang A, Wang X, et al. The advances of carbon nanotubes in cancer diagnostics and therapeutics. J Nanomater. 2017;2017:1–13. doi: 10.1155/2017/3418932.
  • John S, Hester S, Basij M, et al. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. Photoacoustics. 2023;32:100533. doi: 10.1016/j.pacs.2023.100533.
  • Kim J-W, Galanzha EI, Shashkov EV, et al. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol. 2009;4(10):688–694. doi: 10.1038/nnano.2009.231.
  • Singh R, Kumar S. Cancer targeting and diagnosis: recent trends with carbon nanotubes. Nanomaterials. 2022;12(13):2283. doi: 10.3390/nano12132283.
  • Robinson JT, Hong G, Liang Y, et al. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J Am Chem Soc. 2012;134(25):10664–10669. doi: 10.1021/ja303737a.
  • Liu Z, Li X, Tabakman SM, et al. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. J Am Chem Soc. 2008;130(41):13540–13541. doi: 10.1021/ja806242t.
  • Tang L, Xiao Q, Mei Y, et al. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnology. 2021;19(1):423. doi: 10.1186/s12951-021-01174-y.
  • Bhalla N, Jolly P, Formisano N, et al. Introduction to biosensors. Essays Biochem. 2016;60(1):1–8. doi: 10.1042/EBC20150001.
  • Mahmoodi P, Rezayi M, Rasouli E, et al. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J Nanobiotechnology. 2020;18(1):11. doi: 10.1186/s12951-020-0577-9.
  • Du X, Li Y, Zhang Z, et al. An electrochemical biosensor for the assessment of tumor immunotherapy based on the detection of immune checkpoint protein programmed death ligand-1. Biosens Bioelectron. 2022;207:114166. doi: 10.1016/j.bios.2022.114166.
  • Chen R, Chen H, Peng H, et al. Multi-walled carbon nanotube array modified electrode with 3D sensing interface as electrochemical DNA biosensor for multidrug-resistant gene detection. Biosensors. 2023;13(8):764. doi: 10.3390/bios13080764.
  • Zhao Y, Sultan D, Liu Y. 2 – biodistribution, excretion, and toxicity of nanoparticles. In: Cui W, Zhao X, editors. Theranostic bionanomaterials. Cambridge: Elsevier; 2019. p. 27–53.
  • Yang ST, Luo J, Zhou Q, et al. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics. 2012;2(3):271–282. doi: 10.7150/thno.3618.
  • Florek E, Witkowska M, Szukalska M, et al. Oxidative stress in long-term exposure to multi-walled carbon nanotubes in male rats. Antioxidants. 2023;12(2):464. doi: 10.3390/antiox12020464.
  • Yang ST, Wang X, Jia G, et al. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett. 2008;181(3):182–189. doi: 10.1016/j.toxlet.2008.07.020.
  • Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A. 2006;103(9):3357–3362. doi: 10.1073/pnas.0509009103.
  • Jacobsen NR, Møller P, Clausen PA, et al. Biodistribution of carbon nanotubes in animal models. Basic Clin Pharmacol Toxicol. 2017;121(Suppl. 3):30–43. doi: 10.1111/bcpt.12705.
  • Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102. doi: 10.1016/j.ijpharm.2005.10.010.
  • Allen BL, Kichambare PD, Gou P, et al. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett. 2008;8(11):3899–3903. doi: 10.1021/nl802315h.
  • Yang M, Zhang M. Biodegradation of carbon nanotubes by macrophages. Front Mater. 2019;6:225. doi: 10.3389/fmats.2019.00225.
  • Jun LY, Mubarak NM, Yee MJ, et al. An overview of functionalised carbon nanomaterial for organic pollutant removal. J Ind Eng Chem. 2018;67:175–186. doi: 10.1016/j.jiec.2018.06.028.
  • Fujigaya T, Nakashima N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci Technol Adv Mater. 2015;16(2):024802. doi: 10.1088/1468-6996/16/2/024802.
  • Cherukuri P, Gannon CJ, Leeuw TK, et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci U S A. 2006;103(50):18882–18886. doi: 10.1073/pnas.0609265103.
  • Maksimova Y, Zorina A, Nesterova L. Oxidative stress response and E. coli biofilm formation under the effect of pristine and modified carbon nanotubes. Microorganisms. 2023;11(5):1221. doi: 10.3390/microorganisms11051221.
  • Golfakhrabadi F, Niknejad MR, Kalantari H, et al. Evaluation of the protective effects of berberine and berberine nanoparticle on insulin secretion and oxidative stress induced by carbon nanotubes in isolated mice islets of Langerhans: an in vitro study. Environ Sci Pollut Res Int. 2023;30(8):21781–21796. doi: 10.1007/s11356-022-23508-5.
  • Qing TL, Yan L, Wang SK, et al. Celastrol alleviates oxidative stress induced by multi-walled carbon nanotubes through the Keap1/Nrf2/HO-1 signaling pathway. Ecotoxicol Environ Saf. 2023;252:114623. doi: 10.1016/j.ecoenv.2023.114623.
  • Luo X, Xie D, Su J, et al. Inflammatory genes associated with pristine multi-walled carbon nanotubes-induced toxicity in ocular cells. Int J Nanomedicine. 2023;18:2465–2484. doi: 10.2147/IJN.S394694.
  • Kala M, Casanova NG, Feng A, et al. Carbon nanotube stimulation of human mononuclear cells to model granulomatous inflammation. Am J Transl Res. 2023;15(3):1704–1714.
  • Greene MK, Scott CJ. Carbon nanotubes activate inflammatory signalling through binding to Siglec-14. Nat Nanotechnol. 2023;18(6):544–545. doi: 10.1038/s41565-023-01420-4.
  • Yamaguchi SI, Xie Q, Ito F, et al. Carbon nanotube recognition by human Siglec-14 provokes inflammation. Nat Nanotechnol. 2023;18(6):628–636. doi: 10.1038/s41565-023-01363-w.
  • Fatkhutdinova LM, Gabidinova GF, Daminova AG, et al. Mechanisms related to carbon nanotubes genotoxicity in human cell lines of respiratory origin. Toxicol Appl Pharmacol. 2023;482:116784. doi: 10.1016/j.taap.2023.116784.
  • Solorio-Rodriguez SA, Williams A, Poulsen SS, et al. Single-walled vs. multi-walled carbon nanotubes: influence of physico-chemical properties on toxicogenomics responses in mouse lungs. Nanomaterials. 2023;13(6):1059. doi: 10.3390/nano13061059.
  • Mishra A, Stueckle TA, Mercer RR, et al. Identification of TGF-β receptor-1 as a key regulator of carbon nanotube-induced fibrogenesis. Am J Physiol Lung Cell Mol Physiol. 2015;309(8):L821–L833. doi: 10.1152/ajplung.00002.2015.
  • Meunier E, Coste A, Olagnier D, et al. Double-walled carbon nanotubes trigger IL-1β release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine. 2012;8(6):987–995. doi: 10.1016/j.nano.2011.11.004.
  • Bengalli RD, Zerbi G, Lucotti A, et al. Carbon nanotubes: structural defects as stressors inducing lung cell toxicity. Chem Biol Interact. 2023;382:110613. doi: 10.1016/j.cbi.2023.110613.
  • Cheng J, Cheng SH. Influence of carbon nanotube length on toxicity to zebrafish embryos. Int J Nanomedicine. 2012;7:3731–3739. doi: 10.2147/IJN.S30459.
  • Kuempel ED, Jaurand M-C, Møller P, et al. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol. 2017;47(1):1–58. doi: 10.1080/10408444.2016.1206061.
  • Fadeel B, Kostarelos K. Grouping all carbon nanotubes into a single substance category is scientifically unjustified. Nat Nanotechnol. 2020;15(3):164–164. doi: 10.1038/s41565-020-0654-0.
  • Belyanskaya L, Weigel S, Hirsch C, et al. Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology. 2009;30(4):702–711. doi: 10.1016/j.neuro.2009.05.005.
  • Liu Y, Zhao Y, Sun B, et al. Understanding the toxicity of carbon nanotubes. Acc Chem Res. 2013;46(3):702–713. doi: 10.1021/ar300028m.
  • Thakur CK, Karthikeyan C, Abou-Dahech MS, et al. Microwave-assisted functionalization of multi-walled carbon nanotubes for biosensor and drug delivery applications. Pharmaceutics. 2023;15(2):335. doi: 10.3390/pharmaceutics15020335.
  • Kim SW, Kyung Lee Y, Yeon Lee J, et al. PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells. Nanotechnology. 2017;28(46):465102. doi: 10.1088/1361-6528/aa8c31.
  • Ruiu A, González-Méndez I, Sorroza-Martínez K, et al. Chapter 5 – drug delivery aspects of carbon nanotubes. In: Kesharwani P, editor. Emerging applications of carbon nanotubes in drug and gene delivery. Cambridge: Woodhead Publishing; 2023. p. 119–155.
  • Bubols GB, Arbo MD, Peruzzi CP, et al. Characterization and in vivo toxicological evaluation of multi-walled carbon nanotubes: a low-dose repeated intratracheal administration study. Environ Sci Pollut Res Int. 2023;30(13):36405–36421. doi: 10.1007/s11356-022-24653-7.
  • Li B, Zhang X-X, Huang H-Y, et al. Effective deactivation of A549 tumor cells in vitro and in vivo by RGD-decorated chitosan-functionalized single-walled carbon nanotube loading docetaxel. Int J Pharm. 2018;543(1–2):8–20. doi: 10.1016/j.ijpharm.2018.03.017.
  • Barani M, Khatami M, Behnam B, et al. 12 – aptamer-conjugated carbon nanotubes or graphene for targeted cancer therapy and diagnosis. In: Kesharwani P, editor. Aptamers engineered nanocarriers for cancer therapy. Cambridge: Woodhead Publishing; 2023. p. 277–294.
  • Jia G, Wang H, Yan L, et al. Cytotoxicity of carbon nanomaterials:  single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol. 2005;39(5):1378–1383. doi: 10.1021/es048729l.
  • Pulskamp K, Diabaté S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett. 2007;168(1):58–74. doi: 10.1016/j.toxlet.2006.11.001.
  • Brown DM, Kinloch IA, Bangert U, et al. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon. 2007;45(9):1743–1756. doi: 10.1016/j.carbon.2007.05.011.
  • Cui D, Tian F, Ozkan CS, et al. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett. 2005;155(1):73–85. doi: 10.1016/j.toxlet.2004.08.015.
  • Smart SK, Cassady AI, Lu GQ, et al. The biocompatibility of carbon nanotubes. Carbon. 2006;44(6):1034–1047. doi: 10.1016/j.carbon.2005.10.011.
  • Dong J, Ma Q. Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology. 2015;9(5):658–676. doi: 10.3109/17435390.2015.1009187.
  • Zhao J, Lin E, Bai Z, et al. Cancer-associated fibroblasts induce sorafenib resistance of hepatocellular carcinoma cells through CXCL12/FOLR1. BMC Cancer. 2023;23(1):1198. doi: 10.1186/s12885-023-11613-8.
  • Choi MC, Kim SK, Choi YJ, et al. Role of monocarboxylate transporter I/lactate dehydrogenase B-mediated lactate recycling in tamoxifen-resistant breast cancer cells. Arch Pharm Res. 2023;46(11–12):907–923. doi: 10.1007/s12272-023-01474-x.
  • Duvivier L, Gerard L, Diaz A, et al. Linking ABC transporters to the hallmarks of cancer. Trends Cancer. 2023. doi: 10.1016/j.trecan.2023.09.013.
  • Delisi DA, Saatloo MV. Ion channels and their role in chemo-resistance. Curr Top Membr. 2023;92:125–150. doi: 10.1016/bs.ctm.2023.09.008.
  • Lin L, Liu L, Zhao B, et al. Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light. Nat Nanotechnol. 2015;10(5):465–471. doi: 10.1038/nnano.2015.28.
  • Kim M, Chen C, Yaari Z, et al. Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo. Nat Chem Biol. 2023;19(12):1448–1457. doi: 10.1038/s41589-023-01364-9.
  • Sun Y, Dong X, He H, et al. 2D carbon network arranged into high-order 3D nanotube arrays on a flexible microelectrode: integration into electrochemical microbiosensor devices for cancer detection. NPG Asia Mater. 2023;15(1):6. doi: 10.1038/s41427-022-00458-5.
  • Sun X, Zaric S, Daranciang D, et al. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J Am Chem Soc. 2008;130(20):6551–6555. doi: 10.1021/ja8006929.
  • Li X, Tu X, Zaric S, et al. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J Am Chem Soc. 2007;129(51):15770–15771. doi: 10.1021/ja077886s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.