163
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Advances in herbal polysaccharides-based nano-drug delivery systems for cancer immunotherapy

, , &
Pages 311-324 | Received 13 Oct 2023, Accepted 20 Jan 2024, Published online: 01 Feb 2024

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492.
  • Liu Y, Lu H, Wang W, et al. Clinical risk factors for mortality in patients with cancer and COVID-19: a systematic review and meta-analysis of recent observational studies. Expert Rev Anticancer Ther. 2021;21(1):107–119. doi:10.1080/14737140.2021.1837628.
  • Wang G, Lu X, Dey P, et al. Targeting Yap-dependent MDSC infiltration impairs tumour progression. Cancer Discov. 2016;6(1):80–95. doi:10.1158/2159-8290.CD-15-0224.
  • Moreno Ayala MA, Li Z, DuPage M. Treg programming and therapeutic reprogramming in cancer. Immunology. 2019;157(3):198–209. doi:10.1111/imm.13058.
  • Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–1355. doi:10.1126/science.aar4060.
  • Pan H, Li W, Chen Z, et al. Click CAR-T cell engineering for robustly boosting cell immunotherapy in blood and subcutaneous xenograft tumour. Bioact Mater. 2021;6(4):951–962. doi:10.1016/j.bioactmat.2020.09.025.
  • Akhter MH, Amin S. An investigative approach to treatment modalities for squamous cell carcinoma of skin. Curr Drug Deliv. 2017;14(5):597–612. doi:10.2174/1567201801666160906104254.
  • Ahmad, Javed, Ahmad, Mohammad Z, Akhter, Habban, et al. Surface-Engineered cancer nanomedicine: rational design and recent progress.Curr Pharm Des. 2020;26(11):1181–1190. doi:10.2174/1381612826666200214110645.
  • Habban Akhter M, Sateesh Madhav N, Ahmad J. Epidermal growth factor receptor based active targeting: a paradigm shift towards advance tumor therapy. Artif Cells Nanomed Biotechnol. 2018;46(sup2):1188–1198. doi:10.1080/21691401.2018.1481863.
  • Nai J, Zhang C, Shao H, et al. Extraction, structure, pharmacological activities and drug carrier applications of angelica sinensis polysaccharide. Int J Biol Macromol. 2021;183:2337–2353. doi:10.1016/j.ijbiomac.2021.05.213.
  • Xue JX, Zhu ZY, Bian WH, et al. The traditional chinese medicine kangai injection as an adjuvant method in combination with chemotherapy for the treatment of breast cancer in chinese patients: a Meta-Analysis. Evid Based Complement Alternat Med. 2018;2018:6305645. doi:10.1155/2018/6305645.
  • Cao Y, Chen Z, Sun L, et al. Herb polysaccharide-based drug delivery system: fabrication, properties, and applications for immunotherapy. Pharmaceutics. 2022;14(8):1703. doi:10.3390/pharmaceutics14081703.
  • Yu Z, Shen X, Yu H, et al. Smart polymeric nanoparticles in cancer immunotherapy. Pharmaceutics. 2023;15(3):775. doi:10.3390/pharmaceutics15030775.
  • Yu L, Jin Y, Song M, et al. When natural compounds meet nanotechnology: nature-Inspired nanomedicines for cancer immunotherapy. Pharmaceutics. 2022;14(8):1589. doi:10.3390/pharmaceutics14081589.
  • Sun L, Zuo C, Liu X, et al. Combined photothermal therapy and lycium barbarum polysaccharide for topical administration to improve the efficacy of doxorubicin in the treatment of breast cancer. Pharmaceutics. 2022;14(12):2677. doi:10.3390/pharmaceutics14122677.
  • Zeng Y, Xiang Y, Sheng R, et al. Polysaccharide-based nanomedicines for cancer immunotherapy: a review. Bioact Mater. 2021;6(10):3358–3382. doi:10.1016/j.bioactmat.2021.03.008.
  • Yu Y, Xie H, Zuo J, et al. Clinical research progress of first-line immunotherapy for extensive-stage small cell lung cancer. Precis Med Res. 2022;4(1):4. doi:10.53388/PMR20220004.
  • Linsley PS, Greene JL, Brady W, et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1(9):793–801. doi:10.1016/s1074-7613(94)80021-9.
  • Wang Y, Wang M, Wu HX, et al. Advancing to the era of cancer immunotherapy. Cancer Commun (Lond). 2021;41(9):803–829. doi:10.1002/cac2.12178.
  • Zimmer L, Livingstone E, Hassel JC, et al. Adjuvant nivolumab plus ipilimumab or nivolumab monotherapy versus placebo in patients with resected stage IV melanoma with no evidence of disease (IMMUNED): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020;400(10358):1117–1129. doi:10.1016/S0140-6736(20)30417-7.
  • Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–1034. doi:10.1084/jem.192.7.1027.
  • Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365–1369. doi:10.1038/70932.
  • Cha JH, Chan LC, Li CW, et al. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76(3):359–370. doi:10.1016/j.molcel.2019.09.030.
  • Baumeister SH, Freeman GJ, Dranoff G, et al. Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol. 2016;34(1):539–573. doi:10.1146/annurev-immunol-032414-112049.
  • Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 2015;5(9):915–919. doi:10.1158/2159-8290.CD-15-0563.
  • Vaddepally RK, Kharel P, Pandey R, et al. Review of indications of FDA-Approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel). 2020;12(3):738. doi:10.3390/cancers12030738.
  • Morad G, Helmink BA, Sharma P, et al. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell. 2022;185(3):576. doi:10.1016/j.cell.2022.01.008.
  • Schachter J, Ribas A, Long GV, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390(10105):1853–1862. doi:10.1016/S0140-6736(17)31601-X.
  • Boyiadzis MM, Kirkwood JM, Marshall JL, et al. Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease. J Immunother Cancer. 2018;6(1):35. doi:10.1186/s40425-018-0342-x.
  • June CH, O’Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–1365. doi:10.1126/science.aar6711.
  • Wang H F, Wang S S, Huang M C, et al. Targeting immune-mediated dormancy: a promising treatment of cancer. Front Oncol. 2019;9(June):498. doi:10.3389/fonc.2019.00498.
  • Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–28. doi:10.1038/nm.4441.
  • Borrello I, Imus PH. BCMA CAR T cells: the winding path to success. J Clin Invest. 2019;129(6):2175–2177. doi:10.1172/JCI128372.
  • Chen F, Huang G. Preparation and immunological activity of polysaccharides and their derivatives. Int J Biol Macromol. 2018;112:211–216. doi:10.1016/j.ijbiomac.2018.01.169.
  • Abdolvahab MH, Darvishi B, Zarei M, et al. Interferons: role in cancer therapy. Immunotherapy. 2020;12(11):833–855. doi:10.2217/imt-2019-0217.
  • Ferrantini M, Capone I, Belardelli F. Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie. 2007;89(6-7):884–893. doi:10.1016/j.biochi.2007.04.006.
  • Ross SH, Cantrell DA. Signaling and function of interleukin-2 in T lymphocytes. Annu Rev Immunol. 2018;36(1):411–433. doi:10.1146/annurev-immunol-042617-053352.
  • Davar D, Ding F, Saul M, et al. High-dose interleukin-2 (HD IL-2) for advanced melanoma: a single center experience from the university of pittsburgh cancer institute. J Immunother Cancer. 2017;5(1):74. doi:10.1186/s40425-017-0279-5.
  • Amin A, White RL. Interleukin-2 in renal cell carcinoma: a has-been or a still-viable option? J Kidney Cancer VHL. 2014;1(7):74–83. doi:10.15586/jkcvhl.2014.18.
  • Bonam SR, Partidos CD, Halmuthur SKM, et al. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol Sci. 2017;38(9):771–793. doi:10.1016/j.tips.2017.06.002.
  • Figdor CG, de Vries IJM, Lesterhuis WJ, et al. Dendritic cell immunotherapy: mapping the way. Nat Med. 2004;10(5):475–480. doi:10.1038/nm1039.
  • Moss B. Vaccinia virus: a tool for research and vaccine development. Science. 1991;252(5013):1662–1667. doi:10.1126/science.2047875.
  • Song H, Huang P, Niu J, et al. Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells in vivo and enhance potent cytotoxic T-lymphocyte response against melanoma. Biomaterials. 2018;159:119–129. doi:10.1016/j.biomaterials.2018.01.004.
  • Liu L, Wang Y, Miao L, et al. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol Ther. 2018;26(1):45–55. doi:10.1016/j.ymthe.2017.10.020.
  • Small EJ, Schellhammer PF, Higano CS, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006;24(19):3089–3094. doi:10.1200/JCO.2005.04.5252.
  • de Sostoa J, Dutoit V, Migliorini D. Oncolytic viruses as a platform for the treatment of malignant brain tumours. Int J Mol Sci. 2020;21(20):7449. doi:10.3390/ijms21207449.
  • Harrington K, Freeman DJ, Kelly B, et al. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov. 2019;18(9):689–706. doi:10.1038/s41573-019-0029-0.
  • Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175(2):313–326. doi:10.1016/j.cell.2018.09.035.
  • Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17(7):2105–2116. doi:10.1200/JCO.1999.17.7.2105.
  • Iwama S, De Remigis A, Callahan MK, et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6(230):230ra45. doi:10.1126/scitranslmed.3008002.
  • Hasan S, Awasthi P, Malik S, et al. Immunotherapeutic strategies to induce inflection in the immune response: therapy for cancer and COVID-19. Biotechnol Genet Eng Rev. 2022;Nov 21:1–40. doi:10.1080/02648725.2022.2147661.
  • Kroschinsky F, Stölzel F, von Bonin S, et al. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care. 2017;21(1):89. doi:10.1186/s13054-017-1678-1.
  • Akhter MH, Beg S, Tarique M, et al. Receptor-based targeting of engineered nanocarrier against solid tumors: recent progress and challenges ahead. Biochim Biophys Acta Gen Subj. 2020;1865(2):129777. doi:10.1016/j.bbagen.2020.129777.
  • Meng Y, Zhang Y, Jia N, et al. Synthesis and evaluation of a novel water-soluble high Se-enriched astragalus polysaccharide nanoparticles. Int J Biol Macromol. 2018;118(Pt B):1438–1448. doi:10.1016/j.ijbiomac.2018.06.153.
  • Pang G, Zhang S, Zhou X, et al. Immunoactive polysaccharide functionalized gold nanocomposites promote dendritic cell stimulation and antitumour effects. Nanomedicine (Lond). 2019;14(10):1291–1306. doi:10.2217/nnm-2018-0390.
  • Pang G, Chen C, Liu Y, et al. Bioactive polysaccharide nanoparticles improve Radiation-Induced abscopal effect through manipulation of dendritic cells. ACS Appl Mater Interfaces. 2019;11[1] Pang(45):42661–42670. doi:10.1021/acsami.9b16814.
  • Xiong J, Jiang B, Luo Y, et al. Multifunctional nanoparticles encapsulating astragalus polysaccharide and gold nanorods in combination with focused ultrasound for the treatment of breast cancer. Int J Nanomedicine. 2020;15:4151–4169. doi:10.2147/IJN.S246447.
  • Guo C, Hou X, Liu Y, et al. Novel chinese angelica polysaccharide biomimetic nanomedicine to curcumin delivery for hepatocellular carcinoma treatment and immunomodulatory effect. Phytomedicine. 2021;80(September 2020):153356. doi:10.1016/j.phymed.2020.153356.
  • Wang MZ, He X, Yu Z, et al. A nano drug delivery system based on angelica sinensis polysaccharide for combination of chemotherapy and immunotherapy. Molecules. 2020;25(13):3096. doi:10.3390/molecules25133096.
  • Zhang S, Pang G, Chen C, et al. Effective cancer immunotherapy by Ganoderma lucidum polysaccharide-gold nanocomposites through dendritic cell activation and memory T cell response. Carbohydr Polym. 2019;205:192–202. doi:10.1016/j.carbpol.2018.10.028.
  • Yu H, Yang Y, Jiang T, et al. Effective radiotherapy in tumour assisted by Ganoderma lucidum polysaccharide-Conjugated bismuth sulfide nanoparticles through radiosensitization and dendritic cell activation. ACS Appl Mater Interfaces. 2019;11(31):27536–27547. doi:10.1021/acsami.9b07804.
  • Liu K, Feng Z, Shan L, et al. Preparation, characterization, and antioxidative activity of bletilla striata polysaccharide/chitosan microspheres for oligomeric proanthocyanidins. Dry Technol. 2017;35(13):1629–1643. doi:10.1080/07373937.2016.1269123.
  • Mao Q, Min J, Zeng R, et al. Self-assembled traditional Chinese nanomedicine modulating tumour immunosuppressive microenvironment for colorectal cancer immunotherapy. Theranostics. 2022;12(14):6088–6105. doi:10.7150/thno.72509.
  • Xiong Y-X, Li N, Han M-M, et al. Rhodiola rosea polysaccharides-based nanoparticles loaded with DOX boosts chemo-immunotherapy for triple-negative breast cancer by re-educating tumour-associated macrophages. Int J Biol Macromol. 2023;239:124110. doi:10.1016/j.ijbiomac.2023.124110.
  • Joseph MM, Aravind SR, Varghese S, et al. PST-Gold nanoparticle as an effective anticancer agent with immunomodulatory properties. Colloids Surf B Biointerfaces. 2013;104:32–39. doi:10.1016/j.colsurfb.2012.11.046.
  • Tao S, Song Y, Ding S, et al. Dendrobium officinale polysaccharide-based carrier to enhance photodynamic immunotherapy. Carbohydr Polym. 2023;317(June):121089. doi:10.1016/j.carbpol.2023.121089.
  • Guo H, Su Y, Guo C, et al. Polysaccharide based drug delivery systems for chinese medicines. Biocatal Agric Biotechnol. 2022;44:102441. doi:10.1016/j.bcab.2022.102441.
  • Liu X, Liu Q, Liang L, et al. The mechanism of astragalus membranaceus in treating peritoneal fibrosis by intervening the key syndrome and pathology based on Q-marker theory. Precis Med Res. 2022;4(2):10. doi:10.53388/PMR20220010.
  • Ren Q, Zhao S, Ren C, et al. Astragalus polysaccharide alleviates LPS-induced inflammation injury by regulating miR-127 in H9c2 cardiomyoblasts. Int J Immunopathol Pharmacol. 2018;32:2058738418759180. doi:10.1177/2058738418759180.
  • Yin X, Chen L, Liu Y, et al. Enhancement of the innate immune response of bladder epithelial cells by astragalus polysaccharides through upregulation of TLR4 expression. Biochem Biophys Res Commun. 2010;397(2):232–238. doi:10.1016/j.bbrc.2010.05.090.
  • Lu Y, Xing QQ, Xu JY, et al. Astragalus polysaccharide modulates ER stress response in an OVA-LPS induced murine model of severe asthma. Int J Biol Macromol. 2016;93(Pt A):995–1006. doi:10.1016/j.ijbiomac.2016.09.058.
  • Liu Z, Jiao Y, Wang Y, et al. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60(15):1650–1662. doi:10.1016/j.addr.2008.09.001.
  • Wersäll PJ, Blomgren H, Pisa P, et al. Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol. 2006;45(4):493–497. doi:10.1080/02841860600604611.
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumour blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–151. doi:10.1016/j.addr.2010.04.009.
  • Qin T, Chen J, Wang D, et al. Optimization of selenylation conditions for chinese angelica polysaccharide based on immune-enhancing activity. Carbohydr Polym. 2013;92(1):645–650. doi:10.1016/j.carbpol.2012.08.097.
  • Zhang Y, Zhou T, Wang H, et al. Structural characterization and in vitro antitumour activity of an acidic polysaccharide from angelica sinensis (oliv.) diels. Carbohydr Polym. 2016;147:401–408. doi:10.1016/j.carbpol.2016.04.002.
  • Cao W, Li XQ, Wang X, et al. A novel polysaccharide, isolated from angelica sinensis (oliv.) diels induces the apoptosis of cervical cancer HeLa cells through an intrinsic apoptotic pathway. Phytomedicine. 2010;17(8-9):598–605. doi:10.1016/j.phymed.2009.12.014.
  • Yang T, Jia M, Zhou S, et al. Antivirus and immune enhancement activities of sulfated polysaccharide from angelica sinensis. Int J Biol Macromol. 2012;50(3):768–772. doi:10.1016/j.ijbiomac.2011.11.027.
  • Chen D, Sun K, Mu H, et al. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system. Int J Nanomedicine. 2012;7:2621–2630. doi:10.2147/IJN.S31757.
  • Chen H, Gu Z, An H, et al. Precise nanomedicine for intelligent therapy of cancer. Sci. China Chem. 2018;61(12):1503–1552. doi:10.1007/s11426-018-9397-5.
  • Cai J, Fu J, Li R, et al. A potential carrier for anti-tumour targeted delivery-hyaluronic acid nanoparticles. Carbohydr Polym. 2019;208:356–364. doi:10.1016/j.carbpol.2018.12.074.
  • Zhu Q, Chen X, Xu X, et al. Tumor-Specific self-Degradable nanogels as potential carriers for systemic delivery of anticancer proteins. Adv Funct Materials. 2018;28(17):1707371. doi:10.1002/adfm.201707371.
  • Chen D, Lian S, Sun J, et al. Design of novel multifunctional targeting nano-carrier drug delivery system based on CD44 receptor and tumor microenvironment pH condition. Drug Deliv. 2016;23(3):808–813. doi:10.3109/10717544.2014.917130.
  • Yazdani HO, Huang H, Tsung A. Autophagy: dual response in the development of hepatocellular carcinoma. Cells. 2019;8(2):91. doi:10.3390/cells8020091.
  • Gonzalez PS, O’Prey J, Cardaci S, et al. Mannose impairs tumour growth and enhances chemotherapy. Nature. 2018;563(7733):719–723. doi:10.1038/s41586-018-0729-3.
  • Lv X, Chen D, Yang L, et al. Comparative studies on the immunoregulatory effects of three polysaccharides using high content imaging system. Int J Biol Macromol. 2016;86:28–42. doi:10.1016/j.ijbiomac.2016.01.048.
  • Zhu N, Lv X, Wang Y, et al. Comparison of immunoregulatory effects of polysaccharides from three natural herbs and cellular uptake in dendritic cells. Int J Biol Macromol. 2016;93(Pt A):940–951. doi:10.1016/j.ijbiomac.2016.09.064.
  • Kimmelman AC, White E. Autophagy and tumour metabolism. Cell Metab. 2017;25(5):1037–1043. doi:10.1016/j.cmet.2017.04.004.
  • Tomoda M, Nakatsuka S, Tamai M, et al. Plant mucilages. VIII. Isolation and characterization of a mucous polysaccharide, "bletilla-glucomannan, "from bletilla striata tubers. Chem. Pharm. Bull. 1973;21(12):2667–2671. doi:10.1248/cpb.21.2667.
  • Peng Q, Li M, Xue F, et al. Structure and immunobiological activity of a new polysaccharide from bletilla striata. Carbohydr Polym. 2014;107:119–123. doi:10.1016/j.carbpol.2014.02.042.
  • Ding L, Shan X, Zhao X, et al. Spongy bilayer dressing composed of chitosan–Ag nanoparticles and chitosan–bletilla striata polysaccharide for wound healing applications. Carbohydr Polym. 2017;157:1538–1547. doi:10.1016/j.carbpol.2016.11.040.
  • Huang Y, Shi F, Wang L, et al. Preparation and evaluation of bletilla striata polysaccharide/carboxymethyl chitosan/carbomer 940 hydrogel for wound healing. Int J Biol Macromol. 2019;132:729–737. doi:10.1016/j.ijbiomac.2019.03.157.
  • Zhang Q, Qi C, Wang H, et al. Biocompatible and degradable bletilla striata polysaccharide hemostasis sponges constructed from natural medicinal herb bletilla striata. Carbohydr Polym. 2019;226:115304. doi:10.1016/j.carbpol.2019.115304.
  • Ding M, Shao K, Wu L, et al. A NO/ROS/RNS cascaded-releasing nano-platform for gas/PDT/PTT/immunotherapy of tumours. Biomater Sci. 2021;9(17):5824–5840. doi:10.1039/d1bm00726b.
  • Zu YY, Liu QF, Tian SX, et al. Effective fraction of bletilla striata reduces the inflammatory cytokine production induced by water and organic extracts of airborne fine particulate matter (PM2.5) in vitro. BMC Complement Altern Med. 2019;19(1):369. doi:10.1186/s12906-019-2790-3.
  • Zhang C, Gao F, Gan S, et al. Chemical characterization and gastroprotective effect of an isolated polysaccharide fraction from bletilla striata against ethanol-induced acute gastric ulcer. Food Chem Toxicol. 2019;131:110539. doi:10.1016/j.fct.2019.05.047.
  • Wang Y, Han S, Li R, et al. Structural characterization and immunological activity of polysaccharides from the tuber of bletilla striata. Int J Biol Macromol. 2019;122:628–635. doi:10.1016/j.ijbiomac.2018.10.201.
  • Palao-Suay R, Gómez-Mascaraque LG, Aguilar MR, et al. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Prog Polym Sci. 2016;53:207–248. doi:10.1016/j.progpolymsci.2015.07.005.
  • Xu Y, Jiang H, Sun C, et al. Antioxidant and hepatoprotective effects of purified rhodiola rosea polysaccharides. Int J Biol Macromol. 2018;117:167–178. doi:10.1016/j.ijbiomac.2018.05.168.
  • Deng S, Zhang G, Kuai J, et al. Lentinan inhibits tumour angiogenesis via interferon γ and in a T cell independent manner. J Exp Clin Cancer Res. 2018;37(1):260. doi:10.1186/s13046-018-0932-y.
  • Cai Z, Li W, Wang H, et al. Antitumour effects of a purified polysaccharide from rhodiola rosea and its action mechanism. Carbohydr Polym. 2012;90(1):296–300. doi:10.1016/j.carbpol.2012.05.039.
  • Aravind SR, Joseph MM, Varghese S, et al. Antitumour and immunopotentiating activity of polysaccharide PST001 isolated from the seed kernel of tamarindus indica. ScientificWorldJournal. 2012;2012:361382. doi:10.1100/2012/361382.
  • Khan MI, Hossain MI, Hossain MK, et al. Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Appl Bio Mater. 2022;5(3):971–1012. doi:10.1021/acsabm.2c00002.
  • Hossen S, Hossain MK, Basher MK, et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2019;15:1–18. doi:10.1016/j.jare.2018.06.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.