196
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

State-of-the-art drug delivery system to target the lymphatics

, , , , , ORCID Icon & ORCID Icon show all
Pages 347-364 | Received 08 Sep 2023, Accepted 07 Jan 2024, Published online: 05 Feb 2024

References

  • Managuli RS, Raut SY, Reddy MS, et al. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv. 2018;15(8):787–804. doi: 10.1080/17425247.2018.1503249.
  • Qin L, Zhang F, Lu X, et al. Polymeric micelles for enhanced lymphatic drug delivery to treat metastatic tumors. J Control Release. 2013;171(2):133–142. doi: 10.1016/J.JCONREL.2013.07.005.
  • Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev. 2001;50(1–2):3–20. doi: 10.1016/S0169-409X(01)00150-8.
  • O’Driscoll C. Anatomy and physiology of the lymphatics. In: Lymphatic transport of drugs. pp. 1–30. 2019, doi: 10.1201/9780203748572-1.
  • Miller MJ, Mcdole JR, Newberry RD. Microanatomy of the intestinal lymphatic system. Ann N Y Acad Sci. 2010;1207(Suppl 1):E21–8. doi: 10.1111/J.1749-6632.2010.0570X.
  • N. Singh, M. Handa, V. Singh, P. Kesharwani, and R. Shukla, Lymphatic targeting for therapeutic application using nanoparticulate systems, J Drug Target, 1–17. 2022, doi: 10.1080/1061186X.2022.2092741.
  • Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–248. doi: 10.1038/nrd2197.
  • Hari L, Reddy V, Murth SR. Lymphatic tran sport of orally administered drugs. Indian J Exp Biol. 2002;40:109.
  • N. L. Trevaskis, L. Hu, S. M. Caliph, S. Han, and C. J. H. Porter, The mesenteric lymph duct cannulated rat model: application to the assessment of intestinal lymphatic drug transport, J Vis Exp. 2015(97),2015,doi: 10.3791/52389.
  • Kim H, Kim Y, Lee J. Liposomal formulations for enhanced lymphatic drug delivery. Asian J Pharm Sci. 2013;8(2):96–103. doi: 10.1016/j.ajps.2013.07.012.
  • Khan AA, Mudassir J, Mohtar N, et al. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomed. 2013;8:2733–2744. doi: 10.2147/IJN.S41521.
  • Jeevanandam J, Barhoum A, Chan YS, et al. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9(1):1050–1074. doi: 10.3762/bjnano.9.98.
  • Fam SY, Chee CF, Yong CY, et al. Stealth coating of nanoparticles in drug-delivery systems. pp. 1–18.
  • Lord RSA. The white veins: conceptual difficulties in the history of the lymphatics. Med Hist. 1968;12(2):174–184. doi: 10.1017/S0025727300013053.
  • Crivellato E, Travan L, Ribatti D. The hippocratic treatise ‘on glands’: the first document on lymphoid tissue and lymph nodes. Leukemia. 2007 21:42007;21(4):591–592. doi: 10.1038/sj.leu.2404618.
  • Milasan A, Ledoux J, Martel C. Lymphatic network in atherosclerosis: the underestimated path. Future Sci OA. 2015;1(4):FSO61. doi: 10.4155/FSO.15.61.
  • Aspelund A, Robciuc MR, Karaman S, et al. Lymphatic system in cardiovascular medicine. Circ Res. 2016;118(3):515–530. doi: 10.1161/CIRCRESAHA.115.306544.
  • Leak LV. Lymphatic removal of fluids and particles in the mammalian lung. Environ Health Perspect. 1980;35:55–75. doi: 10.1289/EHP.803555.
  • Leak LV, Burke JF. Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat. 1966;118(3):785–809. doi: 10.1002/AJA.1001180308.
  • Phan CT, Tso P. Intestinal lipid absorption and transport. Front Biosci. 2001;6(1, p):d299. doi: 10.2741/PHAN.
  • Banerji S, Ni J, Wang SX, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 1999;144(4):789–801. doi: 10.1083/JCB.144.4.789.
  • Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors - Partanen - 1999 - Cancer - Wiley Online Library. [Cited 2023 Aug 15. Available from: 10.1002/%28SICI%291097-0142%2819991201%2986%3A11%3C2406%3A%3AAID-CNCR31%3E3.0.CO%3B2-E.
  • Wetterwald A, Hoffstetter W, Cecchini MG, et al. Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes. Bone. 1996;18(2):125–132. doi: 10.1016/8756-3282(95)00457-2.
  • Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis - PubMed. [Cited 2023 Aug 15]. Available from: https://pubmed.ncbi.nlm.nih.gov/9327748/.
  • Matsui K, Breitender-Geleff S, Soleiman A, et al. Podoplanin, a novel 43-kDa membrane protein, controls the shape of podocytes. Nephrol Dial Transplant. 1999;14 (Suppl. 1):9–11. doi: 10.1093/NDT/14.SUPPL_1.9.
  • Rodriguez-Niedenführ M, Papoutsi M, Christ B, et al. Prox1 is a marker of ectodermal placodes, endodermal compartments, lymphatic endothelium and lymphangioblasts. Anat Embryol (Berl). 2001;204(5):399–406. doi: 10.1007/S00429-001-0214-9/METRICS.
  • Soni M, Handa M, Shukla R. Nano drug delivery approaches for lymphatic filariasis therapeutics. In: Nanotechnology for infectious diseases. pp. 263–279. 2022. doi: 10.1007/978-981-16-9190-4_12.
  • Morton DL, Eilber FR, Joseph WL, et al. Immunological factors in human sarcomas and melanomas: a rational basis for immunotherapy. Ann Surg. 1970;172(4):740–749. doi: 10.1097/00000658-197010000-00018.
  • I. Singh, R. Swami, W. Khan, and R. Sistla, Delivery systems for lymphatic targeting, pp. 429–458, 2014, doi: 10.1007/978-1-4614-9434-8.
  • O’Hagan DT, Christy NM, Davis SS. Particulates and lymphatic drug delivery. In: Lymphatic transport of drugs. pp. 279–315. 2019, doi: 10.1201/9780203748572-9.
  • Porter CJH, Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliv Rev. 2001;50(1–2):61–80. doi: 10.1016/S0169-409X(01)00151-X.
  • W. N. Charman and V. J. Stella, Lymphatic transport of drugs. In: Lymphatic transport of drugs, 2019, doi: 10.1201/9780203748572/LYMPHATIC-TRANSPORT-DRUGS-WILLIAM-CHARMAN.
  • Cai S, Yang Q, Bagby TR, et al. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev. 2011;63(10–11):901–908. doi: 10.1016/j.addr.2011.05.017.
  • Landh E, Moir LM, Bradbury P, et al. Properties of rapamycin solid lipid nanoparticles for lymphatic access through the lungs – part I : the effect of size. Nanomedicine (Lond). 2020;15(20):1927–1945. doi: 10.2217/nnm-2020-0077.
  • Kobayashi N, Takahashi D, Takano S, et al. The roles of peyer’s patches and microfold cells in the gut immune system: relevance to autoimmune diseases. Front Immunol. 2019;10:2345. doi: 10.3389/FIMMU.2019.02345.
  • Hirn S, Semmler-Behnke M, Schleh C, et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm. 2011;77(3):407–416. doi: 10.1016/j.ejpb.2010.12.029.
  • Schleh C, Semmler-Behnke M, Lipka J, et al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology. 2012;6(1):36–46. doi: 10.3109/17435390.2011.552811.
  • Reboldi A, Cyster JG. Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunol Rev. 2016;271(1):230–245. doi: 10.1111/IMR.12400.
  • Mabbott NA, Donaldson DS, Ohno H, et al. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6(4):666–677. doi: 10.1038/MI.2013.30.
  • Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol. 2011;193(4):607–618. doi: 10.1083/jcb.201012094.
  • Bachhav SS, Dighe VD, Devarajan PV. Exploring peyer’s patch uptake as a strategy for targeted lung delivery of polymeric rifampicin nanoparticles. Mol Pharm. 2018;15(10):4434–4445. doi: 10.1021/ACS.MOLPHARMACEUT.8B00382.
  • Luo YY, Xiong XY, Tian Y, et al. A review of biodegradable polymeric systems for oral insulin delivery. Drug Deliv. 2016;23(6):1882–1891. doi: 10.3109/10717544.2015.1052863.
  • Lemmer HJ, Hamman JH. Paracellular drug absorption enhancement through tight junction modulation. Expert Opin Drug Deliv. 2013;10(1):103–114. doi: 10.1517/17425247.2013.745509.
  • Ma BL, Yang Y, Dai Y, et al. Polyethylene glycol 400 (PEG400) affects the systemic exposure of oral drugs based on multiple mechanisms: taking berberine as an example. RSC Adv. 2017;7(5):2435–2442. doi: 10.1039/C6RA26284H.
  • He H, Xie Y, Lv Y, et al. Bioimaging of intact polycaprolactone nanoparticles using aggregation-caused quenching probes: size-dependent translocation via oral delivery. Adv Healthc Mater. 2018;7(22):e1800711. doi: 10.1002/ADHM.201800711.
  • Soudry-Kochavi L, Naraykin N, Nassar T, et al. Improved oral absorption of exenatide using an original nanoencapsulation and microencapsulation approach. J Control Release. 2015;217:202–210. doi: 10.1016/J.JCONREL.2015.09.012.
  • Pustylnikov S, Sagar D, Jain P, et al. Targeting the C-type lectins-mediated host-pathogen interactions with dextran. J Pharm Pharm Sci. 2014;17(3):371–392. doi: 10.18433/J3N590.
  • Holm R, Porter CJH, Edwards GA, et al. Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides. Eur J Pharm Sci. 2003;20(1):91–97. doi: 10.1016/S0928-0987(03)00174-X.
  • Hunt JN, Knox MT. A relation between the chain length of fatty acids and the slowing of gastric emptying. J Physiol. 1968;194(2):327–336. doi: 10.1113/JPHYSIOL.1968.SP008411.
  • Mohite P, Singh S, Pawar A, et al. Lipid-based oral formulation in capsules to improve the delivery of poorly water-soluble drugs. Front. Drug Deliv. 2023;3:1232012. doi: 10.3389/fddev.2023.1232012.
  • Abdelkader H, Alani AWG, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014;21(2):87–100. doi: 10.3109/10717544.2013.838077.
  • Nakhaei P, Margiana R, Bokov DO, et al. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front Bioeng Biotechnol. 2021;9:705886. doi: 10.3389/FBIOE.2021.705886.
  • Abu-Dahab R, Schäfer UF, Lehr CM. Lectin-functionalized liposomes for pulmonary drug delivery: effect of nebulization on stability and bioadhesion. Eur J Pharm Sci. 2001;14(1):37–46. doi: 10.1016/S0928-0987(01)00147-6.
  • Gabizon A, Goren D, Cohen R, et al. Development of liposomal anthracyclines: from basics to clinical applications. J Control Release. 1998;53(1–3):275–279. doi: 10.1016/S0168-3659(97)00261-7.
  • Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release. 2005;107(2):215–228. doi: 10.1016/J.JCONREL.2005.06.006.
  • Müller RH, Shegokar R, Keck CM. 20 Years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr Drug Discov Technol. 2011;8(3):207–227. doi: 10.2174/157016311796799062.
  • Elmowafy M, Al-Sanea MM. Nanostructured lipid carriers (NLCs) as drug delivery platform: advances in formulation and delivery strategies. Saudi Pharm J. 2021;29(9):999–1012. doi: 10.1016/J.JSPS.2021.07.015.
  • Zhuang C-Y, Li N, Wang M, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394(1–2):179–185. doi: 10.1016/J.IJPHARM.2010.05.005.
  • Jörgensen AM, Wibel R, Veider F, et al. Self-emulsifying drug delivery systems (SEDDS): how organic solvent release governs the fate of their cargo. Int J Pharm. 2023;647:123534. doi: 10.1016/j.ijpharm.2023.
  • Pouton CW. Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev. 1997;25(1):47–58. doi: 10.1016/S0169-409X(96)00490-5.
  • Patil MS, Shirkhedkar AA. Self-microemulsifying drug delivery system for solubility and bioavailability enhancement of eprosartan mesylate: preparation, in-vitro, and in-vivo evaluation. Pharm Nanotechnol. 2023;11(1):56–69. doi: 10.2174/2211738510666220915100150.
  • Craig DQM, Lievens HSR, Pitt KG, et al. An investigation into the physico-chemical properties of self-emulsifying systems using low frequency dielectric spectroscopy, surface tension measurements and particle size analysis. Int J Pharm. 1993;96(1-3):147–155. doi: 10.1016/0378-5173(93)90222-2.
  • Zhang L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional chinese medicine. Drug Deliv. 2019;26(1):860–869. doi: 10.1080/10717544.2019.1660732.
  • Rani S, Rana R, Saraogi GK, et al. Self-emulsifying oral lipid drug delivery systems: advances and challenges. AAPS PharmSciTech. 2019;20(3):129. doi: 10.1208/S12249-019-1335-X.
  • Gausuzzaman SAL, Saha M, Dip SJ, et al. A QbD approach to design and to optimize the self-emulsifying resveratrol–phospholipid complex to enhance drug bioavailability through lymphatic transport. Polymers (Basel). 2022;14(15):3220. doi: 10.3390/POLYM14153220/S1.
  • Myers RA, Stella VJ. Factors affecting the lymphatic transport of penclomedine (NSC-338720), a lipophilic cytotoxic drug: comparison to DDT and hexachlorobenzene. Int J Pharm. 1992;80(1–3):51–62. doi: 10.1016/0378-5173(92)90261-Y.
  • Jang JH, Jeong SH, Lee YB. Enhanced lymphatic delivery of methotrexate using W/O/W nanoemulsion: in vitro characterization and pharmacokinetic study. Pharmaceutics. 2020;12(10):978. doi: 10.3390/PHARMACEUTICS12100978.
  • Nadhiya VD, Kumaresan R. Combined experimental and computational investigation of 2-(2-Hydroxyphenylimino) phenolic derivatives: synthesis, molecular structure and NLO studies. IJOC. 2017;07(02):185–217. doi: 10.4236/ijoc.2017.72015.
  • Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17(1):117–132. doi: 10.1295/polymj.17.117.
  • Wang J, Li B, Qiu L, et al. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng. 2022;16(1):18. doi: 10.1186/S13036-022-00298-5.
  • Hodge P. Polymer science branches out. Nature. 1993;362(6415):18–19. doi: 10.1038/362018a0.
  • Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247. doi: 10.1186/1556-276X-9-247.
  • Ryan GM, Kaminskas LM, Bulitta JB, et al. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin. J Control Release. 2013;172(1):128–136. doi: 10.1016/J.JCONREL.2013.08.004.
  • Bao W, Zhou J, Luo J, et al. PLGA microspheres with high drug loading and high encapsulation efficiency prepared by a novel solvent evaporation technique. J Microencapsul. 2006;23(5):471–479. doi: 10.1080/02652040600687613.
  • Damptey R, Torres S, Cummings L, et al. Synthesis and characterization of polylactic acid microspheres via emulsion-based processing. MRS Adv. 2023; doi: 10.1557/S43580-023-00634-X.
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21(23):2475–2490. doi: 10.1016/S0142-9612(00)00115-0.
  • Coppi G, Iannuccelli V. Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system. Int J Pharm. 2009;367(1–2):127–132. doi: 10.1016/J.IJPHARM.2008.09.040.
  • Henna TK, Pramod K. Graphene quantum dots redefine nanobiomedicine. Mater Sci Eng C Mater Biol Appl. 2020;110:110651. doi: 10.1016/J.MSEC.2020.110651.
  • Lu J, Tang M, Zhang T. Review of toxicological effect of quantum dots on the liver. J Appl Toxicol. 2019;39(1):72–86. doi: 10.1002/JAT.3660.
  • Lovrić J, Bazzi HS, Cuie Y, et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med (Berl). 2005;83(5):377–385. doi: 10.1007/S00109-004-0629-X.
  • Esteve-Turrillas FA, Abad-Fuentes A. Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosens Bioelectron. 2013;41(1):12–29. doi: 10.1016/J.BIOS.2012.09.025.
  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008;5(9):763–775. doi: 10.1038/nmeth.1248.
  • Kosaka N, Mitsunaga M, Choyke PL, et al. In vivo real-time lymphatic draining using quantum-dot optical imaging in mice. Contrast Media Mol Imaging. 2013;8(1):96–100. doi: 10.1002/CMMI.1487.
  • Paliwal R, Rai S, Vaidya B, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine. 2009;5(2):184–191. doi: 10.1016/J.NANO.2008.08.003.
  • Hawley AE, Davis SS, Illum L. Targeting of colloids to lymph nodes: influence of lymphatic physiology and colloidal characteristics. Adv Drug Deliv Rev. 1995;17(1):129–148. doi: 10.1016/0169-409X(95)00045-9.
  • Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res. 1990;7(2):167–169. doi: 10.1023/A:1015880819328.
  • Illum L, Davis SS, Müller RH, et al. The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a blockcopolymer - poloxamine 908. Life Sci. 1987;40(4):367–374. doi: 10.1016/0024-3205(87)90138-X.
  • Singh I, Swami R, Khan W, et al. Delivery systems for lymphatic targeting. Focal Controlled Drug Delivery. 2014;:429. doi: 10.1007/978-1-4614-9434-8_20.
  • Jannaway M, Scallan JP. VE-Cadherin and vesicles differentially regulate lymphatic vascular permeability to solutes of various sizes. Front Physiol. 2021;12:687563. doi: 10.3389/FPHYS.2021.687563/BIBTEX.
  • Luo G, Yu X, Jin C, et al. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int J Pharm. 2010;385(1–2):150–156. doi: 10.1016/J.IJPHARM.2009.10.014.
  • Harivardhan Reddy L, Sharma RK, Chuttani K, et al. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in dalton’s lymphoma tumor bearing mice. J Control Release. 2005;105(3):185–198. doi: 10.1016/J.JCONREL.2005.02.028.
  • Davis SS, Ilium L, Moghimi SM, et al. Microspheres for targeting drugs to specific body sites. J Controlled Release. 1993;24(1–3):157–163. doi: 10.1016/0168-3659(93)90175-5.
  • Reddingius RE, Schröder CH, Willems HL, et al. Measurement of peritoneal fluid handling in children on continuous ambulatory peritoneal dialysis using autologous hemoglobin. Perit Dial Int. 1994;14(1):42–47. doi: 10.1177/089686089401400108.
  • Kaminskas LM, Porter CJH. Targeting the lymphatics using dendritic polymers (dendrimers). Adv Drug Deliv Rev. 2011;63(10–11):890–900. doi: 10.1016/J.ADDR.2011.05.016.
  • Patel HM, Boodle KM, Vaughan-Jones R. Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99m-technetium marker to represent intact liposomes in lymph nodes. Biochim Biophys Acta. 1984;801(1):76–86. doi: 10.1016/0304-4165(84)90214-9.
  • Yáñez JA, Wang SWJ, Knemeyer IW, et al. Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev. 2011;63(10–11):923–942. doi: 10.1016/J.ADDR.2011.05.019.
  • Takakura Y, Atsumi R, Hashida M, et al. Development of a novel polymeric prodrug of mitomycin C, mitomycin C-dextran conjugate with anionic charge. II. Disposition and pharmacokinetics following intravenous and intramuscular administration. Int J Pharm. 1987;37(1–2):145–154. doi: 10.1016/0378-5173(87)90019-6.
  • Rao DA, Forrest ML, Alani AWG, et al. Biodegradable PLGA based nanoparticles for sustained regional lymphatic drug delivery. J Pharm Sci. 2010;99(4):2018–2031. doi: 10.1002/JPS.21970.
  • Clogston JD, Patri AK. Zeta potential measurement. In: Methods in molecular biology. Vol. 697, pp. 63–70. 2011, doi: 10.1007/978-1-60327-198-1_6/COVER.
  • Kaur CD, Nahar M, Jain NK. Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target. 2008;16(10):798–805. doi: 10.1080/10611860802475688.
  • Moghimi SM, Patel HM. Serum opsonins and phagocytosis of saturated and unsaturated phospholipid liposomes. Biochim Biophys Acta. 1989;984(3):384–387. doi: 10.1016/0005-2736(89)90307-6.
  • Moghimi SM, Patel HM. Opsonophagocytosis of liposomes by peritoneal macrophages and bone marrow reticuloendothelial cells. Biochim Biophys Acta. 1992;1135(3):269–274. doi: 10.1016/0167-4889(92)90230-9.
  • Taheri A, Bremmell KE, Joyce P, et al. Battle of the milky way: lymphatic targeted drug delivery for pathogen eradication. J Control Release. 2023;363:507–524. doi: 10.1016/j.jconrel.2023.10.002.
  • Wasan KM. The role of lymphatic transport in enhancing oral protein and peptide drug delivery. Drug Dev Ind Pharm. 2002;28(9):1047–1058. doi: 10.1081/DDC-120014573.
  • Nauli A, Nauli S. Intestinal transport as a potential determinant of drug bioavailability. Curr Clin Pharmacol. 2016;8(3):247–255. doi: 10.2174/1574884711308030012.
  • Trevaskis NL, Charman WN, Porter CJH. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev. 2008;60(6):702–716. doi: 10.1016/J.ADDR.2007.09.007.
  • Sanjula B, Shah FM, Javed A, et al. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J Drug Target. 2009;17(3):249–256. doi: 10.1080/10611860902718672.
  • Tyrer P, Foxwell AR, Cripps AW, et al. Microbial pattern recognition receptors mediate M-cell uptake of a Gram-Negative bacterium. Infect Immun. 2006;74(1):625–631. doi: 10.1128/IAI.74.1.625-631.2006.
  • Louveau A, Plog BA, Antila S, et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127(9):3210–3219. doi: 10.1172/JCI90603.
  • Eroglu C, Barres BA. Regulation of synaptic connectivity by glia. Nature. 2010;468(7321):223–231. doi: 10.1038/NATURE09612.
  • Kim Y, Park J, Choi YK. The role of astrocytes in the Central nervous system focused on BK channel and heme oxygenase metabolites: a review. Antioxidants. 2019;8(5):121. doi: 10.3390/ANTIOX8050.
  • Seifert G, Henneberger C, Steinhäuser C. Diversity of astrocyte potassium channels: an update. Brain Res Bull. 2018;136:26–36. doi: 10.1016/J.BRAINRESBULL.2016.12.002.
  • Chen Y, Qin C, Huang J, et al. The role of astrocytes in oxidative stress of Central nervous system: a mixed blessing. Cell Prolif. 2020;53(3):e12781. doi: 10.1111/CPR.12781.
  • The role of astrocytes in oxidative stress of central nervous system: A mixed blessing - PMC. [Cited 2023 Dec 8]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7106951/.
  • MacAulay N, Keep RF, Zeuthen T. Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited. Fluids Barriers CNS. 2022;19(1):26. doi: 10.1186/S12987-022-00323-1.
  • Steiner AA, Branco LGS. Hypoxia-induced anapyrexia: implications and putative mediators. Annu Rev Physiol. 2002;64(1):263–288. doi: 10.1146/ANNUREV.PHYSIOL.64.081501.155856.
  • Wong BW. Lymphatic vessels in solid organ transplantation and immunobiology. Am J Transplant. 2020;20(8):1992–2000. doi: 10.1111/AJT.15806.
  • Henry W, Querfurth HW, LaFerla FM. Mechanisms of disease Alzheimer’s disease. N Engl J Med. 2010;362(4):329–344. doi: 10.1056/NEJMra0909142.
  • Casey DA, Antimisiaris D, O’Brien J. Drugs for alzheimer’s disease: are they effective? Pharm Therap. 2010; 35(4):208.
  • Stacker SA, Williams SP, Karnezis T, et al. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer. 2014;14(3):159–172. doi: 10.1038/nrc3677.
  • Reed HO, Wang L, Sonett J, et al. Lymphatic impairment leads to pulmonary tertiary lymphoid organ formation and alveolar damage. J Clin Invest. 2019;129(6):2514–2526. doi: 10.1172/JCI125044.
  • Zhang D, Li X, Li B. Glymphatic system dysfunction in Central nervous system diseases and mood disorders. Front Aging Neurosci. 2022;14:873697. doi: 10.3389/FNAGI.2022.
  • Sci-Hub | Targeting transporters: Promoting blood–brain barrier repair in response to oxidative stress injury. Brain Research, 1623, 39–52 |. [Cited 2022 Nov 25]. Available from: 10.1016/j.brainres.2015.03.018.
  • Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53. doi: 10.1038/NRN1824.
  • Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46(6):957–967. doi: 10.1016/J.IMMUNI.2017.06.006.
  • Ezzo J, Manheimer E, McNeely ML, et al. Manual lymphatic drainage for lymphedema following breast cancer treatment. Cochrane Database Syst Rev. 2015;2015(5) doi: 10.1002/14651858.CD003475.PUB2/MEDIA/CDSR/CD003475/IMAGE_N/NCD003475-CMP-002-03.PNG.
  • Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. doi: 10.1126/SCITRANSLMED.3003748.
  • Cai Y, Liu J, Wang B, et al. Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Front Immunol. 2022;13:856376. doi: 10.3389/FIMMU.2022.
  • Li S, Li Q. Cancer stem cells, lymphangiogenesis, and lymphatic metastasis. Cancer Lett. 2015;357(2):438–447. doi: 10.1016/j.canlet.2014.12.013.
  • Cooke MJ, Wang Y, Morshead CM, et al. Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials. 2011;32(24):5688–5697. doi: 10.1016/j.biomaterials.2011.04.032.
  • Alves De Lima K, Rustenhoven J, Kipnis J. Meningeal immunity and its function in maintenance of the Central nervous system in health and disease. Annu. Rev. Immunol. 2020;38(1):597–620. doi: 10.1146/annurev-immunol-102319-103410.
  • Buccellato FR, D’Anca M, Serpente M, et al. The role of glymphatic system in Alzheimer’s and Parkinson’s disease pathogenesis. Biomedicines. 2022;10(9):2261. doi: 10.3390/BIOMEDICINES10092261.
  • Alves G, Lange J, Blennow K, et al. CSF Aβ42 predicts early-onset dementia in parkinson disease. Neurology. 2014;82(20):1784–1790. doi: 10.1212/WNL.0000000000000425.
  • Alcalay RN, Caccappolo E, Mejia-Santana H, et al. Cognitive performance of GBA mutation carriers with early-onset PD the CORE-PD study. Neurology. 2012;78(18):1434–1440. doi: 10.1212/WNL.0B013E318253D54B.
  • Fang Y, Dai S, Jin C, et al. Aquaporin-4 polymorphisms are associated with cognitive performance in parkinson’s disease. Front Aging Neurosci. 2021;13:740491. doi: 10.3389/FNAGI.2021.740491/FULL.
  • Unnithan AKA, Das JM, Mehta P. Hemorrhagic Stroke, StatPearls, May 2023. [Cited 2023 Dec 8]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559173/.
  • Ahmed RM, Newcombe REA, Piper AJ, et al. Sleep disorders and respiratory function in amyotrophic lateral sclerosis. Sleep Med Rev. 2015;26:33–42. doi: 10.1016/J.SMRV.2015.05.007.
  • Liu R, Jia W, Wang Y, et al. Glymphatic system and subsidiary pathways drive nanoparticles away from the brain. Research. 2022;2022. doi: 10.34133/2022/9847612.
  • Takeuchi H, Kitagawa Y. Sentinel node and mechanism of lymphatic metastasis. Ann Vasc Dis. 2012;5(3):249–257. doi: 10.3400/AVD.RA.12.00033.
  • Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2011;2(12):1097–1105. doi: 10.1177/1947601911423031.
  • Ding Y, Li Z, Jaklenec A, et al. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev. 2021;179:113914. doi: 10.1016/J.ADDR.2021.113914.
  • Costa-Barbosa A, Pacheco MI, Carneiro C, et al. Design of a lipid nano-delivery system containing recombinant Candida albicans chitinase 3 as a potential vaccine against fungal infections. Biomed Pharmacother. 2023;166:115362. doi: 10.1016/J.BIOPHA.2023.
  • Kwon S, Velasquez FC, Rasmussen JC, et al. Nanotopography-based lymphatic delivery for improved anti-tumor responses to checkpoint blockade immunotherapy. Theranostics. 2019;9(26):8332–8343. doi: 10.7150/THNO.35280.
  • Feeney OM, Gracia G, Brundel DHS, et al. Lymph-directed immunotherapy – harnessing endogenous lymphatic distribution pathways for enhanced therapeutic outcomes in cancer. Adv Drug Deliv Rev. 2020;160:115–135. doi: 10.1016/J.ADDR.2020.10.002.
  • Zbyszynski P, Toraason I, Repp L, et al. Probing the subcutaneous absorption of a PEGylated FUD peptide nanomedicine via in vivo fluorescence imaging. Nano Converg. 2019;6(1):1–15. doi: 10.1186/S40580-019-0192-3/FIGURES/11.
  • van der Maaden K, Luttge R, Vos PJ, et al. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv Transl Res. 2015;5(4):397–406. doi: 10.1007/S13346-015-0238-Y.
  • Ahrends T, Borst J. The opposing roles of CD4+ T cells in anti‐tumour immunity. Immunology. 2018;154(4):582–592. doi: 10.1111/IMM.12941.
  • Tuan-Mahmood T-M, McCrudden MTC, Torrisi BM, et al. Microneedles for intradermal and transdermal delivery. Eur J Pharm Sci. 2013;50(5):623–637. doi: 10.1016/J.EJPS.2013.05.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.