90
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Valeric acid reduction by chitosan oligosaccharide induces autophagy in a Parkinson’s disease mouse model

, , , , , , , , & show all
Pages 423-432 | Received 18 Oct 2023, Accepted 30 Jan 2024, Published online: 14 Feb 2024

References

  • Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384–386. doi:10.1212/01.wnl.0000247740.47667.03.
  • Parkinson’s disease: pathogenesis and clinical aspects. Brisbane (AU):Codon Publications; 2018.
  • Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114 (Pt 5)(5):2283–2301. doi:10.1093/brain/114.5.2283.
  • Balestrino R, Schapira A. Parkinson disease. Eur J Neurol. 2020;27(1):27–42. doi:10.1111/ene.14108.
  • Raza C, Anjum R, Shakeel N. Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci. 2019;226:77–90. doi:10.1016/j.lfs.2019.03.057.
  • Picca A, Guerra F, Calvani R, et al. Mitochondrial dysfunction, protein misfolding and neuroinflammation in parkinson’s disease: roads to biomarker discovery. Biomolecules. 2021;11(10):1508. doi:10.3390/biom11101508.
  • de Andrade R, de Araujo NK, Torres-Rego M, et al. Production and characterization of chitooligosaccharides: evaluation of acute toxicity, healing, and anti-inflammatory actions. Int J Mol Sci. 2021;22(19):10631. doi:10.3390/ijms221910631.
  • Anil S. Potential medical applications of chitooligosaccharides. Polymers. 2022;14(17):3558. doi:10.3390/polym14173558.
  • Wu W, Wei W, Lu M, et al. Neuroprotective effect of chitosan oligosaccharide on hypoxic-ischemic brain damage in neonatal rats. Neurochem Res. 2017;42(11):3186–3198. doi:10.1007/s11064-017-2356-z.
  • Zhang X, Liang S, Gao X, et al. Protective effect of chitosan oligosaccharide against hydrogen peroxide-mediated oxidative damage and cell apoptosis via activating Nrf2/ARE signaling pathway. Neurotox Res. 2021;39(6):1708–1720. doi:10.1007/s12640-021-00419-w.
  • Wang B, Wang L, Qu Y, et al. Chitosan oligosaccharides exert neuroprotective effects via modulating the PI3K/akt/bcl-2 pathway in a Parkinsonian model. Food Funct. 2022;13(10):5838–5853. doi:10.1039/d1fo04374a.
  • Zhu L, Li R, Jiao S, et al. Blood-brain barrier permeable chitosan oligosaccharides interfere with beta-amyloid aggregation and alleviate beta-amyloid protein mediated neurotoxicity and neuroinflammation in a dose- and degree of polymerization-dependent manner. Mar Drugs. 2020;18(10):488. doi:10.3390/md18100488.
  • Chae SY, Jang MK, Nah JW. Influence of molecular weight on oral absorption of water soluble chitosans. J Control Release. 2005;102(2):383–394. doi:10.1016/j.jconrel.2004.10.012.
  • van de Waterbeemd H, Camenisch G, Folkers G, et al. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target. 1998;6(2):151–165. doi:10.3109/10611869808997889.
  • Chen Q, Fan J, Lin L, et al. Combination of Lycium barbarum L. and Laminaria japonica polysaccharides as a highly efficient prebiotic: optimal screening and complementary regulation of gut probiotics and their metabolites. Int J Biol Macromol. 2023;246:125534. doi:10.1016/j.ijbiomac.2023.125534.
  • Sharma P, Kishore A, De I; Negi S, et al. Mitigating neuroinflammation in Parkinson’s disease: exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int. 2023;170:105604. doi:10.1016/j.neuint.2023.105604.
  • Li Y, Dong J, Xiao H, et al. Gut commensal derived-valeric acid protects against radiation injuries. Gut Microbes. 2020;11(4):789–806. doi:10.1080/19490976.2019.1709387.
  • Onyszkiewicz M, Gawrys-Kopczynska M, Salagaj M, et al. Valeric acid lowers arterial blood pressure in rats. Eur J Pharmacol. 2020;877:173086. doi:10.1016/j.ejphar.2020.173086.
  • Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461–478. doi:10.1038/s41575-019-0157-3.
  • Zhang M, Zhang Y, Niu M, et al. Dihydromyricetin alleviates pyroptosis and necroptosis in mice with MPTP-induced chronic Parkinson’s disease by inducing autophagy. Nan Fang Yi Ke Da Xue Xue Bao. 2023;43(8):1268–1278. doi:10.12122/j.issn.1673-4254.2023.08.02.
  • Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158. doi:10.1126/scitranslmed.3009759.
  • Hou YF, Shan C, Zhuang SY, et al. Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of Parkinson’s disease. Microbiome. 2021;9(1):34. doi:10.1186/s40168-020-00988-6.
  • MacFabe DF, Cain DP, Rodriguez-Capote K, et al. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res. 2007;176(1):149–169. doi:10.1016/j.bbr.2006.07.025.
  • Abdelli LS, Samsam A, Naser SA. Propionic acid induces gliosis and neuro-inflammation through modulation of PTEN/AKT pathway in autism spectrum disorder. Sci Rep. 2019;9(1):8824. doi:10.1038/s41598-019-45348-z.
  • Kakoty V, K CS, Dubey SK, et al. Neuroprotective effects of trehalose and sodium butyrate on preformed fibrillar form of alpha-synuclein-induced rat model of parkinson’s disease. ACS Chem Neurosci. 2021;12(14):2643–2660. doi:10.1021/acschemneuro.1c00144.
  • Liu J, Wang F, Liu S, et al. Sodium butyrate exerts protective effect against Parkinson’s disease in mice via stimulation of glucagon like peptide-1. J Neurol Sci. 2017;381:176–181. doi:10.1016/j.jns.2017.08.3235.
  • Qiao CM, Sun MF, Jia XB, et al. Sodium butyrate exacerbates parkinson’s disease by aggravating neuroinflammation and colonic inflammation in MPTP-induced mice model. Neurochem Res. 2020;45(9):2128–2142. doi:10.1007/s11064-020-03074-3.
  • Han R, Nusbaum O, Chen X, et al. Valeric acid suppresses liver cancer development by acting as a novel HDAC inhibitor. Mol Ther Oncolytics. 2020;19:8–18. doi:10.1016/j.omto.2020.08.017.
  • Shi F, Li Y, Han R, et al. Valerian and valeric acid inhibit growth of breast cancer cells possibly by mediating epigenetic modifications. Sci Rep. 2021;11(1):2519. doi:10.1038/s41598-021-81620-x.
  • Yuille S, Reichardt N, Panda S, et al. Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLOS One. 2018;13(7):e0201073. doi:10.1371/journal.pone.0201073.
  • Vishwakarma S, Goyal R, Gupta V, et al. GABAergic effect of valeric acid from Valeriana wallichii in amelioration of ICV STZ induced dementia in rats. Revista brasileira de farmacognosia. 2016;26(4):484–489. doi:10.1016/j.bjp.2016.02.008.
  • Dulla BS, S B, K LP. A study on the effect of valeric acid in alzheimer’s induced rats by the estimation of Aβ 1-42 biomarker. J Allied Health Sciences NU. 2022;12(02):134–138. doi:10.1055/s-0041-1736274.
  • Lai Z, Shan W, Li J, et al. Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol Psychiatry. 2021;26(12):7167–7187. doi:10.1038/s41380-021-01291-y.
  • Zeng X, Li J, Shan W, et al. Gut microbiota of old mice worsens neurological outcome after brain ischemia via increased valeric acid and IL-17 in the blood. Microbiome. 2023;11(1):204. doi:10.1186/s40168-023-01648-1.
  • Jayaraj RL, Beiram R, Azimullah S, et al. Valeric acid protects dopaminergic neurons by suppressing oxidative stress, neuroinflammation and modulating autophagy pathways. Int J Mol Sci. 2020;21(20):7670. doi:10.3390/ijms21207670.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.