136
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Emerging role of ferroptosis in diabetic retinopathy: a review

, , , , &
Pages 393-403 | Received 08 Nov 2023, Accepted 05 Feb 2024, Published online: 22 Feb 2024

References

  • Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology. 2021;128(11):1580–1591. doi: 10.1016/j.ophtha.2021.04.027.
  • Yang Z, Tan TE, Shao Y, et al. Classification of diabetic retinopathy: past, present and future. Front Endocrinol. 2022;13:1079217. doi: 10.3389/fendo.2022.1079217.
  • Kusuhara S, Fukushima Y, Ogura S, et al. Pathophysiology of diabetic retinopathy: the old and the new. Diabetes Metab J. 2018;42(5):364–376. doi: 10.4093/dmj.2018.0182.
  • Lynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res. 2017;139:101–107. doi: 10.1016/j.visres.2017.03.003.
  • Levine SR, Sapieha P, Dutta S, et al. It is time for a moonshot to find “cures” for diabetic retinal disease. Prog Retin Eye Res. 2022;90:101051. doi: 10.1016/j.preteyeres.2022.101051.
  • Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia. 2018;61(9):1902–1912. doi: 10.1007/s00125-018-4692-1.
  • Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina choroid in health disease. Prog Retin Eye Res. 2013;31(5):377–406. doi: 10.1016/j.preteyeres.2012.04.004.
  • Elizabeth PM, Wang Z, Chen J, et al. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Endocrinology. 2021;17(4):195–274.
  • Huang Z, Liang J, Chen S, et al. RIP3-mediated microglial necroptosis promotes neuroinflammation and neurodegeneration in the early stages of diabetic retinopathy. Cell Death Dis. 2023;14(3):227. doi: 10.1038/s41419-023-05660-z.
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–1070. doi: 10.1161/CIRCRESAHA.110.223545.
  • Hammes HP. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia. 2018;61(1):29–38. doi: 10.1007/s00125-017-4435-8.
  • Kang Q, Yang C. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020;37:101799. doi: 10.1016/j.redox.2020.101799.
  • Chen Q, Tang L, Xin G, et al. Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium. Free Radic Biol Med. 2019;130:48–58. doi: 10.1016/j.freeradbiomed.2018.10.419.
  • Jiang X, Stockwell BR, Conrad M. Ferroptosis-mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–282. doi: 10.1038/s41580-020-00324-8.
  • Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369–379. doi: 10.1038/cdd.2015.158.
  • Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15(2):135–147. doi: 10.1038/nrm3737.
  • Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med. 2020;152:175–185. doi: 10.1016/j.freeradbiomed.2020.02.027.
  • Zilka O, Shah R, Li B, et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent Sci. 2017;3(3):232–243. doi: 10.1021/acscentsci.7b00028.
  • Chen X, Li J, Kang R, et al. Ferroptosis: machinery and regulation. Autophagy. 2021;17(9):2054–2081. doi: 10.1080/15548627.2020.1810918.
  • Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 2021;6(1):49.
  • Shao J, Bai Z, Zhang L, et al. Ferrostatin-1 alleviates tissue and cell damage in diabetic retinopathy by improving the antioxidant capacity of the Xc(-)-GPX4 system. Cell Death Discov. 2022;8(1):426. doi: 10.1038/s41420-022-01141-y.
  • Tang X, Li X, Zhang D, et al. Astragaloside-IV alleviates high glucose-induced ferroptosis in retinal pigment epithelial cells by disrupting the expression of miR-138-5p/Sirt1/Nrf2. Bioengineered. 2022;13(4):8240–8254. doi: 10.1080/21655979.2022.2049471.
  • Zhao T, Guo X, Sun Y. Iron accumulation and lipid peroxidation in the aging retina: implication of ferroptosis in age-related macular degeneration. Aging Dis. 2021;12(2):529–551. doi: 10.14336/AD.2020.0912.
  • Zhu Z, Duan P, Song H, et al. Downregulation of circular RNA PSEN1 ameliorates ferroptosis of the high glucose treated retinal pigment epithelial cells via miR-200b-3p/cofilin-2 axis. Bioengineered. 2021;12(2):12555–12567. doi: 10.1080/21655979.2021.2010369.
  • Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21(11):678–695. doi: 10.1038/s41580-020-0270-8.
  • Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107–125. doi: 10.1038/s41422-020-00441-1.
  • Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26(3):165–176. doi: 10.1016/j.tcb.2015.10.014.
  • Vogt AS, Arsiwala T, Mohsen M, et al. On iron metabolism and its regulation. Int J Mol Sci. 2021;22(9):4591. doi: 10.3390/ijms22094591.
  • Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 2019;10(11):822. doi: 10.1038/s41419-019-2064-5.
  • Wu Y, Tang L, Chen B. Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxid Med Cell Longev. 2014;2014:752387. doi: 10.1155/2014/752387.
  • Zou Y, Li H, Graham ET, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 2020;16(3):302–309. doi: 10.1038/s41589-020-0472-6.
  • Angeli JPF, Shah R, Pratt DA, et al. Ferroptosis inhibition: mechanisms and opportunities. Trends Pharmacol Sci. 2017;38(5):489–498. doi: 10.1016/j.tips.2017.02.005.
  • Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A. 2016;113(34):E4966–E4975.
  • Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–152. doi: 10.1016/j.freeradbiomed.2018.09.014.
  • Doll SPB, Tyurina YY, Panzilius E, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91–98. doi: 10.1038/nchembio.2239.
  • Wang L, Liu Y, Du T, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 2020;27(2):662–675. doi: 10.1038/s41418-019-0380-z.
  • Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575(7784):688–692. doi: 10.1038/s41586-019-1705-2.
  • Buendia I, Michalska P, Navarro E, et al. Nrf2-ARE pathway: an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther. 2016;157:84–104. doi: 10.1016/j.pharmthera.2015.11.003.
  • Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev. 2018;98(3):1169–1203. doi: 10.1152/physrev.00023.2017.
  • Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107. doi: 10.1016/j.redox.2019.101107.
  • Abdalkader M, Lampinen R, Kanninen KM, et al. Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci. 2018;12:466. doi: 10.3389/fnins.2018.00466.
  • Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018;172(3):409.e21–422.e21. doi: 10.1016/j.cell.2017.11.048.
  • Alim I, Caulfield JT, Chen Y, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 2019;177(5):1262.e25–1279.e25. doi: 10.1016/j.cell.2019.03.032.
  • Zhang X, He H, Xiang J, et al. Selenium-containing soybean antioxidant peptides: preparation and comprehensive comparison of different selenium supplements. Food Chem. 2021;358:129888. doi: 10.1016/j.foodchem.2021.129888.
  • Bazan NG, Allan G. Signal transduction and gene expression in the eye- a contemporary view of the pro-inflammatory, anti- inflammatory and modulatory roles of prostaglandins and other bioactive lipids. Surv Ophthalmol. 1997;41 Suppl 2: s23–s34. doi: 10.1016/s0039-6257(97)80004-5.
  • Agbaga MP, Mandal MN, Anderson RE. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J Lipid Res. 2010;51(7):1624–1642. doi: 10.1194/jlr.R005025.
  • Ren J, Ren A, Deng X, et al. Long-chain polyunsaturated fatty acids and their metabolites regulate inflammation in age-related macular degeneration. J Inflamm Res. 2022;15:865–880. doi: 10.2147/JIR.S347231.
  • Skowronska-Krawczyk D, Chao DL. Long-chain polyunsaturated fatty acids and age-related macular degeneration. Adv Exp Med Biol. 2019;1185:39–43. doi: 10.1007/978-3-030-27378-1_7.
  • Liu C, Sun W, Zhu T, et al. Glia maturation factor-beta induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy. Redox Biol. 2022;52:102292. doi: 10.1016/j.redox.2022.102292.
  • Gong Y, Fu Z, Liegl R, et al. Omega-3 and omega-6 long-chain PUFAs and their enzymatic metabolites in neovascular eye diseases. Am J Clin Nutr. 2017;106(1):16–26. doi: 10.3945/ajcn.117.153825.
  • Querques G, Forte R, Souied EH. Retina and omega-3. J Nutr Metab. 2011;2011:748361–748312. doi: 10.1155/2011/748361.
  • Saccà SC, Cutolo CA, Ferrari D, et al. The eye, oxidative damage and polyunsaturated fatty acids. Nutrients. 2018;10(6):668. doi: 10.3390/nu10060668.
  • Rodríguez-Cruz M, Serna DS. Nutrigenomics of omega-3 fatty acids: regulators of the master transcription factors. Nutrition. 2017;41:90–96. doi: 10.1016/j.nut.2017.04.012.
  • Kim H-Y, Spector AA. Synaptamide, endocannabinoid-like derivative of docosahexaenoic acid with cannabinoid-independent function. Prostaglandins Leukot Essent Fatty Acids. 2013;88(1):121–125. doi: 10.1016/j.plefa.2012.08.002.
  • Yefimova MGJJ, Guillonneau X, Keller N, et al. Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina. Invest Ophthalmol Vis Sci. 2000;41(8):2343–2351.
  • Rogers BS, Symons RC, Komeima K, et al. Differential sensitivity of cones to iron-mediated oxidative damage. Invest Ophthalmol Vis Sci. 2007;48(1):438–445. doi: 10.1167/iovs.06-0528.
  • Shu W, Baumann BH, Song Y, et al. Ferrous but not ferric iron sulfate kills photoreceptors and induces photoreceptor-dependent RPE autofluorescence. Redox Biol. 2020;34:101469. doi: 10.1016/j.redox.2020.101469.
  • Ward RJ, Zucca FA, Duyn JH, et al. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045–1060. doi: 10.1016/S1474-4422(14)70117-6.
  • Buyandelger U, Walker DG, Yanagisawa D, et al. Effects of FTMT expression by retinal pigment epithelial cells on features of angiogenesis. Int J Mol Sci. 2020;21(10):3635. doi: 10.3390/ijms21103635.
  • Datta S, Cano M, Ebrahimi K, et al. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. 2017;60:201–218. doi: 10.1016/j.preteyeres.2017.03.002.
  • Chowers I, Wong R, Dentchev T, et al. The iron carrier transferrin is upregulated in retinas from patients with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006;47(5):2135–2140. doi: 10.1167/iovs.05-1135.
  • Picard E, Ranchon-Cole I, Jonet L, et al. Light-induced retinal degeneration correlates with changes in iron metabolism gene expression, ferritin level, and aging. Invest Ophthalmol Vis Sci. 2011;52(3):1261–1274. doi: 10.1167/iovs.10-5705.
  • Yang M, Tsui MG, Tsang JKW, et al. Involvement of FSP1-CoQ(10)-NADH and GSH-GPx-4 pathways in retinal pigment epithelium ferroptosis. Cell Death Dis. 2022;13(5):468. doi: 10.1038/s41419-022-04924-4.
  • Liu B, Wang W, Shah A, et al. Sodium iodate induces ferroptosis in human retinal pigment epithelium ARPE-19 cells. Cell Death Dis. 2021;12(3):230. doi: 10.1038/s41419-021-03520-2.
  • Henning Y, Blind US, Larafa S, et al. Hypoxia aggravates ferroptosis in RPE cells by promoting the Fenton reaction. Cell Death Dis. 2022;13(7):662. doi: 10.1038/s41419-022-05121-z.
  • Li X, Zhu S, Qi F. Blue light pollution causes retinal damage and degeneration by inducing ferroptosis. J Photochem Photobiol B. 2023;238:112617. doi: 10.1016/j.jphotobiol.2022.112617.
  • Liu Y, Wu D, Fu Q, et al. CHAC1 as a novel contributor of ferroptosis in retinal pigment epithelial cells with oxidative damage. Int J Mol Sci. 2023;24(2):1582. doi: 10.3390/ijms24021582.
  • Jin M, Yaung J, Kannan R, et al. Hepatocyte growth factor protects RPE cells from apoptosis induced by glutathione depletion. Invest Ophthalmol Vis Sci. 2005;46(11):4311–4319. doi: 10.1167/iovs.05-0353.
  • Tang Z, Huo M, Ju Y, et al. Nanoprotection against retinal pigment epithelium degeneration via ferroptosis inhibition. Small Methods. 2021;5(12):e2100848. doi: 10.1002/smtd.202100848.
  • Do MTH. Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron. 2019;104(2):205–226. doi: 10.1016/j.neuron.2019.07.016.
  • Swinkels D, Baes M. The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharmacol Ther. 2023;247:108440. doi: 10.1016/j.pharmthera.2023.108440.
  • Chen C, Chen J, Wang Y, et al. Ferroptosis drives photoreceptor degeneration in mice with defects in all-trans-retinal clearance. J Biol Chem. 2021;296:100187. doi: 10.1074/jbc.RA120.015779.
  • Chen C, Yang K, He D, et al. Induction of ferroptosis by HO-1 contributes to retinal degeneration in mice with defective clearance of all-trans-retinal. Free Radic Biol Med. 2023;194:245–254. doi: 10.1016/j.freeradbiomed.2022.12.008.
  • Liu W, Liu S, Li P, et al. Retinitis pigmentosa: progress in molecular pathology and biotherapeutical strategies. Int J Mol Sci. 2022;23(9):4883. doi: 10.3390/ijms23094883.
  • Deleon E, Lederman M, Berenstein E, et al. Alteration in iron metabolism during retinal degeneration in rd10 mouse. Invest Ophthalmol Vis Sci. 2009;50(3):1360–1365. doi: 10.1167/iovs.08-1856.
  • Song D, Song Y, Hadziahmetovic M, et al. Systemic administration of the iron chelator deferiprone protects against light-induced photoreceptor degeneration in the mouse retina. Free Radic Biol Med. 2012;53(1):64–71. doi: 10.1016/j.freeradbiomed.2012.04.020.
  • Azuma K, Koumura T, Iwamoto R, et al. Mitochondrial glutathione peroxidase 4 is indispensable for photoreceptor development and survival in mice. J Biol Chem. 2022;298(4):101824. doi: 10.1016/j.jbc.2022.101824.
  • Jia D, Gao P, Lv Y, et al. Tulp1 deficiency causes early-onset retinal degeneration through affecting ciliogenesis and activating ferroptosis in zebrafish. Cell Death Dis. 2022;13(11):962. doi: 10.1038/s41419-022-05372-w.
  • Kang EY, Liu PK, Wen YT, et al. Role of oxidative stress in ocular diseases associated with retinal ganglion cells degeneration. Antioxidants. 2021;10(12):1948. doi: 10.3390/antiox10121948.
  • Yao F, Peng J, Zhang E, et al. Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma. Cell Death Differ. 2023;30(1):69–81. doi: 10.1038/s41418-022-01046-4.
  • Guo M, Zhu Y, Shi Y, et al. Inhibition of ferroptosis promotes retina ganglion cell survival in experimental optic neuropathies. Redox Biol. 2022;58:102541. doi: 10.1016/j.redox.2022.102541.
  • Charles IKA, Kumar DM, Krishnamoorthy RR, et al. Serum deprivation induces apoptotic cell death of transformed rat retinal ganglion cells via mitochondrial signaling pathways. Invest Ophthalmol Vis Sci. 2005;46(4):1330–1338. doi: 10.1167/iovs.04-0363.
  • Yuki K, Murat D, Kimura I, et al. Reduced-serum vitamin C and increased uric acid levels in normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2010;248(2):243–248. doi: 10.1007/s00417-009-1183-6.
  • Youale J, Bigot K, Kodati B, et al. Neuroprotective effects of transferrin in experimental glaucoma models. Int J Mol Sci. 2022;23(21):12753. doi: 10.3390/ijms232112753.
  • Chen Y, Khan RS, Cwanger A, et al. Dexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity. J Neurosci. 2013;33(8):3582–3587. doi: 10.1523/JNEUROSCI.1497-12.2013.
  • Zhou X, Zong Y, Zhang R, et al. Differential modulation of GABA(A) and NMDA receptors by an alpha7-nicotinic acetylcholine receptor agonist in chronic glaucoma. Front Mol Neurosci. 2017;10:422. doi: 10.3389/fnmol.2017.00422.
  • Gao S, Gao S, Wang Y, et al. Inhibition of ferroptosis ameliorates photoreceptor degeneration in experimental diabetic mice. Int J Mol Sci. 2023;24(23):16946. doi: 10.3390/ijms242316946.
  • Zhang J, Qiu Q, Wang H, et al. TRIM46 contributes to high glucose-induced ferroptosis and cell growth inhibition in human retinal capillary endothelial cells by facilitating GPX4 ubiquitination. Exp Cell Res. 2021;407(2):112800. doi: 10.1016/j.yexcr.2021.112800.
  • Wang J, Shanmugam A, Markand S, et al. Sigma 1 receptor regulates the oxidative stress response in primary retinal muller glial cells via NRF2 signaling and system xc(-), the Na(+)-independent glutamate-cystine exchanger. Free Radic Biol Med. 2015;86:25–36. doi: 10.1016/j.freeradbiomed.2015.04.009.
  • Li SLS, Wang L, Liu S, et al. Effects of amygdalin on ferroptosis and oxidative stress in diabetic retinopathy progression via the NRF2 ARE signaling pathway. Exp Eye Res. 2023;234:109569. doi: 10.1016/j.exer.2023.109569.
  • Li Y, Liu J, Ma X, et al. Maresin-1 inhibits high glucose induced ferroptosis in ARPE-19 cells by activating the Nrf2/HO-1/GPX4 pathway. BMC Ophthalmol. 2023;23(1):368. doi: 10.1186/s12886-023-03115-9.
  • Fan X, Xu M, Ren Q, et al. Downregulation of fatty acid binding protein 4 alleviates lipid peroxidation and oxidative stress in diabetic retinopathy by regulating peroxisome proliferator-activated receptor γ-mediated ferroptosis. Bioengineered. 2022;13(4):10540–10551. doi: 10.1080/21655979.2022.2062533.
  • Zhan D, Zhao J, Shi Q, et al. 25-hydroxyvitamin D3 inhibits oxidative stress and ferroptosis in retinal microvascular endothelial cells induced by high glucose through down-regulation of miR-93. BMC Ophthalmol. 2023;23(1):22. doi: 10.1186/s12886-022-02762-8.
  • Liu Z, Gan S, Fu L, et al. 1,8-Cineole ameliorates diabetic retinopathy by inhibiting retinal pigment epithelium ferroptosis via PPAR-gamma/TXNIP pathways. Biomed Pharmacother. 2023;164:114978. doi: 10.1016/j.biopha.2023.114978.
  • Ganz T. Systemic iron homeostasis. Physiol Rev. 2013;93(4):1721–1741. doi: 10.1152/physrev.00008.2013.
  • Chen YJ, Chen JT, Tai MC, et al. Serum iron and risk of diabetic retinopathy. Nutrients. 2020;12(8):2297. doi: 10.3390/nu12082297.
  • Mu L, Wang D, Dong Z, et al. Abnormal levels of serum ferroptosis-related biomarkers in diabetic retinopathy. J Ophthalmol. 2022;2022:3353740.
  • Chaudhary K, Promsote W, Ananth S, et al. Iron overload accelerates the progression of diabetic retinopathy in association with increased retinal renin expression. Sci Rep. 2018;8(1):3025. doi: 10.1038/s41598-018-21276-2.
  • Bonet A, Pampalona J, Jose-Cunilleras E, et al. Ferritin but not iron increases in retina upon systemic iron overload in diabetic and iron-dextran injected mice. Invest Ophthalmol Vis Sci. 2023;64(3):22. doi: 10.1167/iovs.64.3.22.
  • Baumann B, Sterling J, Song Y, et al. Conditional muller cell ablation leads to retinal iron accumulation. Invest Ophthalmol Vis Sci. 2017;58(10):4223–4234. doi: 10.1167/iovs.17-21743.
  • Augustine J, Troendle EP, Barabas P, et al. The role of lipoxidation in the pathogenesis of diabetic retinopathy. Front Endocrinol. 2020;11:621938. doi: 10.3389/fendo.2020.621938.
  • Sharma I, Yadav KS, Mugale MN. Redoxisome and diabetic retinopathy: pathophysiology and therapeutic interventions. Pharmacol Res. 2022;182:106292. doi: 10.1016/j.phrs.2022.106292.
  • Newsholme P, Haber EP, Hirabara SM, et al. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol. 2007;583(Pt 1):9–24. doi: 10.1113/jphysiol.2007.135871.
  • Letts JA, Sazanov LA. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol. 2017;24(10):800–808. doi: 10.1038/nsmb.3460.
  • Scialò F, Sriram A, Fernández-Ayala D, et al. Mitochondrial ROS produced via reverse electron transport extend animal lifespan. Cell Metab. 2016;23(4):725–734. doi: 10.1016/j.cmet.2016.03.009.
  • Hass DT, Barnstable CJ. Uncoupling proteins in the mitochondrial defense against oxidative stress. Prog Retin Eye Res. 2021;83:100941. doi: 10.1016/j.preteyeres.2021.100941.
  • Peng JJ, Xiong SQ, Ding LX, et al. Diabetic retinopathy: focus on NADPH oxidase and its potential as therapeutic target. Eur J Pharmacol. 2019;853:381–387. doi: 10.1016/j.ejphar.2019.04.038.
  • Kowluru RA, Mishra M. Epigenetic regulation of redox signaling in diabetic retinopathy: role of Nrf2. Free Radic Biol Med. 2017;103:155–164. doi: 10.1016/j.freeradbiomed.2016.12.030.
  • Gorusupudi A, Chang FY, Nelson K, et al. Bernstein PS: n-3 PUFA supplementation alters retinal very-long-chain-PUFA levels and ratios in diabetic animal models. Mol Nutr Food Res. 2019;63(15):e1801058.
  • Tikhonenko M, Lydic TA, Opreanu M, et al. N-3 polyunsaturated fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function. PLoS One. 2013;8(1):e55177. doi: 10.1371/journal.pone.0055177.
  • Zhang CL, Wang HL, Li PC, et al. Mfsd2a overexpression alleviates vascular dysfunction in diabetic retinopathy. Pharmacol Res. 2021;171:105755. doi: 10.1016/j.phrs.2021.105755.
  • Hu J, Dziumbla S, Lin J, et al. Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy. Nature. 2017;552(7684):248–252. doi: 10.1038/nature25013.
  • Al-Shabrawey M, Mussell R, Kahook K, et al. Increased expression and activity of 12-lipoxygenase in oxygen-induced ischemic retinopathy and proliferative diabetic retinopathy: implications in retinal neovascularization. Diabetes. 2011;60(2):614–624. doi: 10.2337/db10-0008.
  • Mysona B, Dun Y, Duplantier J, et al. Effects of hyperglycemia and oxidative stress on the glutamate transporters GLAST and system xc- in mouse retinal muller glial cells. Cell Tissue Res. 2009;335(3):477–488. doi: 10.1007/s00441-008-0742-1.
  • Zhang L, Yu J, Ye M, et al. Upregulation of CKIP-1 inhibits high-glucose induced inflammation and oxidative stress in HRECs and attenuates diabetic retinopathy by modulating Nrf2/ARE signaling pathway: an in vitro study. Cell Biosci. 2019;9(1):67. doi: 10.1186/s13578-019-0331-x.
  • Shivarudrappa AH, Ponesakki G. Lutein reverses hyperglycemia-mediated blockage of Nrf2 translocation by modulating the activation of intracellular protein kinases in retinal pigment epithelial (ARPE-19) cells. J Cell Commun Signal. 2020;14(2):207–221. doi: 10.1007/s12079-019-00539-1.
  • Wu Y, Zhang S, Gong X, et al. The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression. Mol Cancer. 2020;19(1):39. doi: 10.1186/s12943-020-01157-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.