78
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Lauric acid-based thermosensitive delivery system for the treatment of head and neck squamous cell carcinoma

, , , , , , & show all
Pages 433-443 | Received 06 Sep 2023, Accepted 16 Feb 2024, Published online: 01 Mar 2024

References

  • Board CNE. Head and Neck Cancer: Statistics: American Society of Clinical Oncology (ASCO). 2022 [cited 2022]. Available from: https://www.cancer.net/cancer-types/head-and-neck-cancer/statistics.
  • Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 2020;6(1):92. doi: 10.1038/s41572-020-00224-3.
  • Amin MB, Greene FL, Edge SB, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67(2):93–99. doi: 10.3322/caac.21388.
  • Kalavrezos N, Scully C. Mouth cancer for clinicians part 9: the patient and care team. Dent Update. 2016;43(3):276–287. doi: 10.12968/denu.2016.43.3.276.
  • Glick M. Burket’s oral medicine. Shelton, CT: PMPH USA; 2015.
  • Mahmood SS, Nohria A. Cardiovascular complications of cranial and neck radiation. Curr Treat Options Cardiovasc Med. 2016;18(7):45. doi: 10.1007/s11936-016-0468-4.
  • Sindhu SK, Bauman JE. Current concepts in chemotherapy for head and neck cancer. Oral Maxillofac Surg Clin North Am. 2019;31(1):145–154. doi: 10.1016/j.coms.2018.09.003.
  • McGowan JV, Chung R, Maulik A, et al. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63–75. doi: 10.1007/s10557-016-6711-0.
  • Caponigro F, Comella P, Budillon A, et al. Phase I study of Caelyx (doxorubicin HCL, pegylated liposomal) in recurrent or metastatic head and neck cancer. Ann Oncol. 2000;11(3):339–342. Epub 2000/05/16. doi: 10.1023/a:1008319618638.
  • Niu Q, Sun Q, Bai R, et al. Progress of nanomaterials-based photothermal therapy for oral squamous cell carcinoma. Int J Mol Sci. 2022;23(18):10428. doi: 10.3390/ijms231810428.
  • Enokida T, Tahara M. Electrochemotherapy in the treatment of head and neck cancer: current conditions and future directions. Cancers. 2021;13(6):1418. doi: 10.3390/cancers13061418.
  • Viegas C, Pereira DSM, Fonte P. Insights into nanomedicine for head and neck cancer diagnosis and treatment. Materials. Epub 2022;15(6):2086. doi: 10.3390/ma15062086.
  • Wu T-T, Zhou S-H. Nanoparticle-based targeted therapeutics in head-and-neck cancer. Int J Med Sci. 2015;12(2):187–200. doi: 10.7150/ijms.10083.
  • Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem. 2010;21(5):797–802. doi: 10.1021/bc100070g.
  • Haider M, Zaki KZ, El Hamshary MR, et al. Polymeric nanocarriers: a promising tool for early diagnosis and efficient treatment of colorectal cancer. J Adv Res. 2022;39:237–255. doi: 10.1016/j.jare.2021.11.008.
  • Alghamdi MA, Fallica AN, Virzì N, et al. The promise of nanotechnology in personalized medicine. J Pers Med. 2022;12(5):673. doi: 10.3390/jpm12050673.
  • Greish K, Sawa T, Fang J, et al. SMA–doxorubicin, a new polymeric micellar drug for effective targeting to solid tumours. J Control Release. 2004;97(2):219–230. doi: 10.1016/j.jconrel.2004.03.027.
  • Greish K, Mathur A, Al Zahrani R, et al. Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer. J Control Release. 2018;291:184–195. doi: 10.1016/j.jconrel.2018.10.030.
  • Bahman F, Pittalà V, Haider M, et al. Enhanced anticancer activity of nanoformulation of dasatinib against triple-negative breast cancer. J Pers Med. 2021;11(6):559. doi: 10.3390/jpm11060559.
  • Alimoradi H, Greish K, Barzegar-Fallah A, et al. Nitric oxide-releasing nanoparticles improve doxorubicin anticancer activity. Int J Nanomedicine. 2018;13:7771–7787. doi: 10.2147/Ijn.S187089.
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–284. Epub 2000/03/04. doi: 10.1016/s0168-3659(99)00248-5.
  • Eltahir S, Al Homsi R, Jagal J, et al. Graphene oxide/chitosan injectable composite hydrogel for controlled release of doxorubicin: an approach for enhanced intratumoral delivery. Nanomaterials. 2022;12(23):4261. doi: 10.3390/nano12234261.
  • Dayrit FM. The properties of lauric acid and their significance in coconut oil. J Americ Oil Chem Soc. 2015;92(1):1–15. doi: 10.1007/s11746-014-2562-7.
  • Kitahara T, Aoyama Y, Hirakata Y, et al. In vitro activity of lauric acid or myristylamine in combination with six antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents. 2006;27(1):51–57. doi: 10.1016/j.ijantimicag.2005.08.020.
  • Nevin K, Rajamohan T. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation. Clin Biochem. 2004;37(9):830–835. doi: 10.1016/j.clinbiochem.2004.04.010.
  • Lappano R, Sebastiani A, Cirillo F, et al. The lauric acid-activated signaling prompts apoptosis in cancer cells. Cell Death Discov. 2017;3(1):17063. (doi: 10.1038/cddiscovery.2017.63.
  • Fauser J, Matthews G, Cummins A, et al. Induction of apoptosis by the medium-chain length fatty acid lauric acid in Colon cancer cells due to induction of oxidative stress. Chemotherapy. 2013;59(3):214–224. doi: 10.1159/000356067.
  • Sandhya S, Talukdar J, Bhaishya D,. Chemical and biological properties of lauric acid: a review. IJAR. 2016;4(7):1123–1128. doi: 10.21474/IJAR01/952.
  • Mao Y, Li X, Chen G, et al. Thermosensitive hydrogel system with paclitaxel liposomes used in localized drug delivery system for in situ treatment of tumor: better antitumor efficacy and lower toxicity. J Pharm Sci. 2016;105(1):194–204. doi: 10.1002/jps.24693.
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. Epub 2021/02/05. doi: 10.3322/caac.21660.
  • Assaad E, Maire M, Lerouge S. Injectable thermosensitive chitosan hydrogels with controlled gelation kinetics and enhanced mechanical resistance. Carbohydr Polym. 2015;130:87–96. doi: 10.1016/j.carbpol.2015.04.063.
  • Alexander A, Khan J, Saraf, S, Saraf, S. Polyethylene glycol (PEG)–poly (N-isopropylacrylamide)(PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur J Pharm Biopharm. 2014;88(3):575–85. doi: 10.1016/j.ejpb.2014.07.005.
  • Almeida M, Magalhães M, Veiga F, et al. Poloxamers, poloxamines and polymeric micelles: definition, structure and therapeutic applications in cancer. J Polym Res. 2018;25(1):1–14. doi: 10.1007/s10965-017-1426-x.
  • Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. polymer. 2008;49(8):1993–2007. doi: 10.1016/j.polymer.2008.01.027.
  • Vert M, Doi Y, Hellwich K-H, et al. Terminology for biorelated polymers and applications (IUPAC recommendations 2012. Pure Appl Chem. 2012;84(2):377–410. doi: 10.1351/PAC-REC-10-12-04.
  • Greish K, Jasim A, Parayath N, et al. Micellar formulations of Crizotinib and Dasatinib in the management of glioblastoma multiforme. J Drug Target. 2018;26(8):692–708. doi: 10.1080/1061186X.2017.1419357.
  • Daruwalla J, Greish K, Malcontenti-Wilson C, et al. Styrene maleic acid-pirarubicin disrupts tumor microcirculation and enhances the permeability of colorectal liver metastases. J Vasc Res. 2009;46(3):218–228. doi: 10.1159/000165380.
  • Daruwalla J, Greish K, Nikfarjam M, et al. Evaluation of the effect of SMA–pirarubicin micelles on colorectal cancer liver metastases and of hyperbaric oxygen in CBA mice. J Drug Target. 2007;15(7-8):487–495. doi: 10.1080/10611860701499839.
  • Greish K, Fateel M, Abdelghany S, et al. Sildenafil citrate improves the delivery and anticancer activity of doxorubicin formulations in a mouse model of breast cancer. J Drug Target. 2018;26(7):610–615. doi: 10.1080/1061186X.2017.1405427.
  • Ramya V, Shyam KP, Kowsalya E, et al. Dual roles of coconut oil and its major component lauric acid on redox nexus: focus on cytoprotection and cancer cell death. Front Neurosci. 2022;16:833630. doi: 10.3389/fnins.2022.833630.
  • Sheela D, Narayanankutty A, Nazeem P, et al. Lauric acid induce cell death in Colon cancer cells mediated by the epidermal growth factor receptor downregulation: an in silico and in vitro study. Hum Exp Toxicol. 2019;38(7):753–761. doi: 10.1177/0960327119839185.
  • Verma P, Ghosh A, Ray M, et al. Lauric acid modulates cancer-associated microRNA expression and inhibits the growth of the cancer cell. Anticancer Agents Med Chem. 2020;20(7):834–844. doi: 10.2174/1871520620666200310091719.
  • Hoang Thi TT, Pilkington EH, Nguyen DH, et al. The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers . 2020;12(2):298. doi: 10.3390/polym12020298.
  • Park K. Impact of anti-PEG antibodies on PEGylated nanoparticles fate in vivo. J Control Release. 2018;287:257. doi: 10.1016/j.jconrel.2018.09.014.
  • Garg U, Chauhan S, Nagaich U, et al. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull. 2019;9(2):195–204. doi: 10.15171/apb.2019.023.
  • Liu Y, Yang G, Jin S, et al. Development of high-drug-loading nanoparticles. Chempluschem. 2020;85(9):2143–2157. doi: 10.1002/cplu.202000496.
  • Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018;13(1):339. doi: 10.1186/s11671-018-2728-6.
  • Villanueva-Flores F, Castro-Lugo A, Ramírez OT, et al. Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices. Nanotechnology. 2020;31(13):132002. doi: 10.1088/1361-6528/ab5bc8.
  • Jiang X, Musyanovych A, Röcker C, et al. Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells. Nanoscale. 2011;3(5):2028–2035. doi: 10.1039/c0nr00944j.
  • Zhou X, He X, Shi K, et al. Injectable thermosensitive hydrogel containing erlotinib-loaded hollow mesoporous silica nanoparticles as a localized drug delivery system for NSCLC therapy. Adv Sci . 2020;7(23):2001442. doi: 10.1002/advs.202001442.
  • Peng M, Xu S, Zhang Y, et al. Thermosensitive injectable hydrogel enhances the antitumor effect of embelin in mouse hepatocellular carcinoma. J Pharm Sci. 2014;103(3):965–973. doi: 10.1002/jps.23885.
  • Gao B, Luo J, Liu Y, et al. Intratumoral administration of thermosensitive hydrogel co-loaded with norcantharidin nanoparticles and doxorubicin for the treatment of hepatocellular carcinoma. Int J Nanomedicine. 2021;16:4073–4085. doi: 10.2147/IJN.S308057.
  • Yarmolenko PS, Zhao Y, Landon C, et al. Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperthermia. 2010;26(5):485–498. doi: 10.3109/02656731003789284.
  • Alessandra L. Manipulating pH in cancer treatment: alkalizing drugs and alkaline diet. J Complement Med Alt Healthcare. 2017;2(1):1–5.
  • Chun C, Lee SM, Kim CW, et al. Doxorubicin–polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics. Biomaterials. 2009;30(27):4752–4762. doi: 10.1016/j.biomaterials.2009.05.031.
  • Satish M, Santhosh S, Kalluri S, Yadav A, Madhavan AA, editors. Fe 2 O 3 based Nanocomposites for Enhanced Thermal Energy Storage. 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS); 2020: IEEE. doi: 10.1109/ICIIS51140.2020.9342699.
  • Nifant’ev I, Shlyakhtin A, Komarov P, et al. In vitro and in vivo studies of biodegradability and biocompatibility of poly (εCL)-b-poly (EtOEP)-based films. Polymers (Basel). 2020;12(12):3039. doi: 10.3390/polym12123039.
  • Huang Z, Xiao H, Lu X, et al. Enhanced photo/chemo combination efficiency against bladder tumor by encapsulation of DOX and ZnPC into in situ-formed thermosensitive polymer hydrogel. Int J Nanomedicine. 2018;13:7623–7631. doi: 10.2147/IJN.S179226.
  • Zhao Y, Ran B, Xie X, et al. Developments on the smart hydrogel-based drug delivery system for oral tumor therapy. Gels. 2022;8(11):741. doi: 10.3390/gels8110741.
  • Ruan C, Liu C, Hu H, et al. NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy. Chem Sci. 2019;10(17):4699–4706. doi: 10.1039/c9sc00375d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.