Publication Cover
Endothelium
Journal of Endothelial Cell Research
Volume 15, 2008 - Issue 4
11
Views
3
CrossRef citations to date
0
Altmetric
Regular Articles

Heterogeneity of Phospholipase D Activation by Angiotensin II, Lysophosphatidylcholine, and Insulin in Human Endothelial Cells

, &
Pages 213-218 | Received 22 Jan 2008, Accepted 10 May 2008, Published online: 13 Jul 2009

REFERENCES

  • Andresen B. T., Romero G. G., Jackson E. K. AT2 receptors attenuate AT1 receptor-induced phospholipase D activation in vascular smooth muscle cells. The Journal of Pharmacology and Experimental Therapeutics 2004; 309: 425–431
  • Beck G. C., Yard B. A., Breedijk A. J., Van Ackern K., Van Der Woude F. J. Release of CXC-chemokines by human lung microvascular endothelial cells (LMVEC) compared with macrovascular umbilical vein endothelial cells. Clinical & Experimental Immunology 1999; 118: 298–303
  • Beekhuizen H., van Furth R. Growth characteristics of cultured human macrovascular venous and arterial and microvascular endothelial cells. Journal of Vascular Research 1994; 31: 230–239
  • Boccellino M., Giovane A., Servillo L., Balestrieri C., Quagliuolo L. Fatty acid mobilized by the vascular endothelial growth factor in human endothelial cells. Lipids 2002; 37: 1047–1052
  • Boels P. J., Deutsch J., Gao B., Haworth S. G. Maturation of the response to bradykinin in resistance and conduit pulmonary arteries. Cardiovascular Research 1999; 44: 416–428
  • Chen L., McNeill J. R., Wilson T. W., Gopalakrishnan V. Heterogeneity in vascular smooth muscle responsiveness to angiotensin II. Role of endothelin. Hypertension 1995; 26: 83–88
  • Chu C. C., Loh S. H., Chen A., Lee W. H., Jin J. S. Biphasic effects of exogenous phospholipase D on vessel tone. Chinese Journal of Physiology 2002; 45: 1–7
  • Cox D. A., Cohen M. L. Lysophosphatidylcholine stimulates phospholipase D in human coronary endothelial cells: role of PKC. American Journal of Physiology 1996; 271: H1706–H1710
  • English D., Cui Y., Siddiqui R. A. Messenger functions of phosphatidic acid. Chemistry and Physics of Lipids 1996; 80: 117–132
  • Eringa E. C., Stehouwer C. D., Merlijn T., Westerhof N., Sipkema P. Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles. Cardiovascular Research 2002; 56: 464–471
  • Freeman E. J., Tallant E. A. Vascular smooth-muscle cells contain AT1 angiotensin receptors coupled to phospholipase D activation. Biochemical Journal 1994; 304: 543–548
  • Hastie L. E., Patton W. F., Hechtman H. B., Shepro D. Metabolites of the phospholipase D pathway regulate H2O2-induced filamin redistribution in endothelial cells. Journal of Cellular Biochemistry 1998; 68: 511–524
  • Hu Q., Natarajan V., Ziegelstein R. C. Phospholipase D regulates calcium oscillation frequency and nuclear factor-kappaB activity in histamine-stimulated human endothelial cells. Biochemical and Biophysical Research Communications 2002; 292: 325–332
  • Jackson C. J., Nguyen M. Human microvascular endothelial cells differ from macrovascular endothelial cells in their expression of matrix metalloproteinases. International Journal of Biochemistry and Cell Biology 1997; 10: 1167–1177
  • Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. Journal of Clinical Investigation 1973; 52: 2745–2756
  • Konopatskaya O., Whatmore J. L., Tooke J. E., Shore A. C. Insulin and lysophosphatidylcholine synergistically stimulate NO-dependent cGMP production in human endothelial cells. Diabetic Medicine 2003; 20: 838–845
  • Kretz M., Mundy A. L., Widmer C. C., Barton M. Early aging and anatomic heterogeneity determine cyclooxygenase-mediated vasoconstriction to angiotensin II in mice. Journal of Cardiovascular Pharmacology 2006; 48: 30–33
  • Lang I., Hoffmann C., Olip H., Pabst M. A., Hahn T., Dohr G., Desoye G. Differential mitogenic responses of human macrovascular and microvascular endothelial cells to cytokines underline their phenotypic heterogeneity. Cell Proliferation 2001; 34: 143–155
  • Lang I., Pabst M. A., Hiden U., Blaschitz A., Dohr G., Hahn T., Desoye G. Heterogeneity of microvascular endothelial cells isolated from human term placenta and macrovascular umbilical vein endothelial cells. European Journal of Cell Biology 2003; 82: 163–173
  • Liu G. L., Shaw L., Heagerty A. M., Ohanian V., Ohanian J. Endothelin-1 stimulates hydrolysis of phosphatidylcholine by phospholipases C and D in intact rat mesenteric arteries. Journal of Vascular Research 1999; 36: 35–46
  • Muniyappa R., Quon M. J. Insulin action and insulin resistance in vascular endothelium. Current Opinion in Clinical Nutrition and Metabolic Care 2007; 10: 523–530
  • Murohara T., Kugiyama K., Ohgushi M., Sugiyama S., Ohta Y., Yasue H. LPC in oxidized LDL elicits vasocontraction and inhibits endothelium-dependent relaxation. American Journal of Physiology 1994; 267: H2441–H2249
  • Murugesan G., Sandhya Rani M. R., Gerber C. E., Mukhopadhyay C., Ransohoff R. M., Chisolm G. M., Kottke-Marchant K. Lysophosphatidylcholine regulates human microvascular endothelial cell expression of chemokines. Journal of Molecular and Cellular Cardiology 2003; 35: 1375–1384
  • Okamura T., Toda N. Different involvement of endothelium-derived relaxing factor and prostacyclin in vasodilator response to bradykinin in isolated dog blood vessels. Advances in Experimental Medicine and Biology 1989; 247A: 429–434
  • O'Sullivan S. E., Kendall D. A., Randall M. D. Heterogeneity in the mechanisms of vasorelaxation to anandamide in resistance and conduit rat mesenteric arteries. British Journal of Pharmacology 2004; 142: 435–442
  • Palicz A., Foubert T. R., Jesaitis A. J., Marodi L., McPhail L. C. Phosphatidic acid and diacylglycerol directly activate NADPH oxidase by interacting with enzyme components. Journal of Biological Chemistry 2001; 276: 3090–3097
  • Parmentier J. H., Pavicevic Z., Malik K. U. ANG II stimulates phospholipase D through PKCzeta activation in VSMC: implications in adhesion, spreading, and hypertrophy. The American Journal of Physiology Heart and Circulatory Physiology 2006; 290: H46–H54
  • Policha A., Daneshtalab N., Chen L., Dale L. B., Altier C., Khosravani H., Thomas W. G., Zamponi G. W., Ferguson S. S. Role of angiotensin II type 1A receptor phosphorylation, phospholipase D, and extracellular calcium in isoform-specific protein kinase C membrane translocation responses. Journal of Biological Chemistry 2006; 281: 26340–26349
  • Portman O. W., Alexander M. Lysophosphatidylcholine concentrations and metabolism in aortic intima plus inner media: effect of nutritionally induced atherosclerosis. Journal of Lipid Research 1969; 10: 158–165
  • Ray R., Shah A. M. NADPH oxidase and endothelial cell function. Clinical Science 2005; 109: 217–226
  • Rossi F., Grzeskowiak M., Della Bianca V., Calzetti F., Gandini G. Phosphatidic acid and not diacylglycerol generated by phospholipase D is functionally linked to the activation of the NADPH oxidase by FMLP in human neutrophils. Biochemical and Biophysical Research Communications 1990; 168: 320–327
  • Seymour L. W., Shoaibi M. A., Martin A., Ahmed A., Elvin P., Kerr D. J., Wakelam M. J. Vascular endothelial growth factor stimulates protein kinase C-dependent phospholipase D activity in endothelial cells. Laboratory Investigation 1996; 75: 427–437
  • Shastri S., Gopalakrishnan V., Poduri R., Di Wang H. Tempol selectively attenuates angiotensin II evoked vasoconstrictor responses in spontaneously hypertensive rats. Journal of Hypertension 2002; 20: 1381–1391
  • Sobel B. E., Corr P. B., Robison A. K., Goldstein R. A., Witkowski F. X., Klein M. S. Accumulation of lysophosphoglycerides with arrhythmogenic properties in ischemic myocardium. Journal of Clinical Investigation 1978; 62: 546–553
  • Sumpio B. E., Riley J. T., Dardik A. Cells in focus: Endothelial cell. International Journal of Biochemistry and Cell Biology 2002; 34: 1508–1512
  • Thorin E., Shreeve S. M. Heterogeneity of vascular endothelial cells in normal and disease states. Pharmacology and Therapeutics 1998; 78: 155–166
  • Touyz R. M., Schiffrin E. L. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. Journal of Hypertension 2001; 19: 1245–1254
  • Whatmore J., Morgan C. P., Cunningham E., Collison K. S., Willison K. R., Cockcroft S. ADP-ribosylation factor 1-regulated phospholipase D activity is localized at the plasma membrane and intracellular organelles in HL60 cells. Biochemical Journal 1996; 320: 785–794
  • Zhang H., Schmeisser A., Garlichs C. D., Plotze K., Damme U., Mugge A., Daniel W. G. Angiotensin II-induced superoxide anion generation in human vascular endothelial cells: Role of membrane-bound NADH-/NADPH-oxidases. Cardiovascular Research 1999; 44: 215–222

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.