199
Views
26
CrossRef citations to date
0
Altmetric
Original

Pulsatile Stretch Induces Release of Angiotensin II and Oxidative Stress in Human Endothelial Cells: Effects of ACE Inhibition and AT1 Receptor Antagonism

, , , , , , & show all
Pages 616-627 | Received 06 Dec 2007, Accepted 03 Apr 2008, Published online: 03 Jul 2009

References

  • Wever RMF, Lüscher TF, Cosentino F, Rabelink TJ. Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation. 1998; 97: 108–112
  • Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005; 25: 29–38
  • Paravicini TM, Touyz RM. Redox signaling in hypertension. Cardiovasc Res. 2006; 71: 247–258
  • Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ Res. 2000; 86: 494–501
  • Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL. Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens. 2004; 22: 35–542
  • Chalupsky K, Cai H. Endothelial dihydrofolate reductase: Critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc Natl Acad Sci USA. 2005; 102: 9056–9061
  • Pitt B. ACE inhibitors for patients with vascular disease without left ventricular dysfunction—may they rest in PEACE?. N Engl J Med. 2004; 351: 2115–2117
  • Mancia G, Weber M. A new dawn in cardiovascular protection: Blood pressure lowering through AT1 blockade. J Hypertens. 2003; 21(Suppl. 6)S1–S2
  • Prasad A, Tupas-Habib T, Schenke WH, Mincemoyer R, Panza JA, Wachawin MA, et al. Acute and chronic angiotensin-1 receptor antagonism reverses endothelial dysfunction in athersclerosis. Circulation. 2000; 101: 2349–2354
  • Hornig B, Landmesser U, Kohler C, Ahlersmann D, Spiekermann S, Christoph A, et al. Comparative effect of ACE inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease. Role of superoxide dismutase. Circulation. 2001; 103: 799–805
  • Ghiadoni L, Magagna A, Versari D, Kardasz I, Huang Y, Taddei S, et al. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension. 2003; 41: 1281–1286
  • Yoshida J, Yamamoto K, Mano T, Sakata Y, Nishikawa N, Nishio M, et al. AT1 receptor blocker added to ACE inhibitor provides benefits at advanced stage of hypertensive diastolic heart failure. Hypertension. 2004; 43: 686–691
  • Lehoux S. Redox signalling in vascular responses to shear and stretch. Cardiovasc Res. 2006; 71: 269–279
  • Hishikawa K, Lüscher TF. Pulsatile stretch stimulates superoxide production in human aortic endothelial cells. Circulation. 1997; 96: 935–941
  • Hishikawa K, Oemar BS, Yang Z, Luscher TF. Pulsatile stretch stimulates superoxide production and activates nuclear factor-kB in human coronary smooth muscle. Circ Res. 1997; 81: 797–803
  • Howard AB, Alexander RW, Nerem RM, Griendling KK, Taylor WR. Cyclic strain induces an oxidative stress in endothelial cells. Am J Physiol. 1997; 272: C421–C427
  • Sadoshima J-I, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993; 75: 977–984
  • Predel H-G, Yang Z, Von Segesser L, Turina M, Buhler FR, Luscher TF. Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle. Lancet. 1992; 340: 878–879
  • Yang Z, Noll G, Lüscher TF. Calcium antagonists differently inhibit proliferation of human coronary smooth muscle cells in response to pulsatile stretch and platelet-derived growth factor. Circulation. 1993; 88: 832–836
  • Zhang H, Schmeisser A, Garlichs Plotze K, Damme U, Mugge A, et al. Angiotensin II-induced superoxide generation in human vascular endothelial cells:role of membrane-bound NADH/NADPH–oxidases. Cardiovasc Res 1999; 44: 215–222
  • DeSilva PE, Husain A, Smeby RR, Khairallah PA. Measurement of immunoreactive angiotensin in rat tissues: some pitfalls in angiotensin II analysis. Anal Biochem 1988; 174: 80–87
  • Cosentino F, Eto M, De Paolis P, van der Loo B, Bachschmid M, Ullrich V, et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells. Role of protein kinase C and reactive oxygen species. Circulation. 2003; 107: 1017–1023
  • Massey V. The microestimation of succinate and extinction coefficient of cytochrome c. Biochem Biophys Acta. 1959; 34: 255–257
  • Miller VM, Burnett JJ. Modulation of NO and endothelin by chronic increases in blood flow in canine femoral arteries. Am J Physiol. 1992; 248: H423–H437
  • Pagano PJ, Clarck JK, Cifuentes-Pagano ME. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: Enhancement by angiotensin II. Proc Natl Acad Sci USA. 1997; 94: 14483–14488
  • Lang D, Mosfer SI, Shakesby A, Donaldson F, Lewis MJ. Coronary microvascular endothelial cell redox state in left ventricular hypertrophy: The role of angiotensin II. Circ Res. 2000; 86: 463–469
  • Davies PF, Tripathi SC. Mechanical stress mechanism and the cell: An endothelial paradigm. Circ Res. 1993; 72: 239–245
  • Ballermann BJ, Dardik A, Eng E, Liu A. Shear stress and the endothelium. Kidney Int Suppl. 1998; 67: S100–S108
  • Hishikawa K, Nakaki T, Marumo T, Suzuki H, Kato R, Saruta T. Pressure enhances endothelin-1 release from cultured human endothelial cells. Hypertension. 1995; 25: 449–452
  • Sumpio BE, Banes AJ. Prostacyclin synthetic activity in cultured aortic endothelial cells undergoing cyclic mechanical deformation. Surgery. 1988; 104: 383–389
  • Wilson E, Mai Q, Sudhir K. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Biol Cell. 1993; 123: 741–747
  • Cheng GC, Libby P, Grodzinsky AJ, Lee RT. Induction of DNA synthesis by a single transient mechanical stimulus of human vascular smooth muscle cells. Circulation. 1996; 93: 99–105
  • Rubanyi GM, Freay AD, Kause K. Mechanoreception by the endothelium: Mediators and mechanisms of pressure- and flow-induced vascular responses. Blood Vessels. 1990; 27: 246–257
  • Hemodynamic forces and vascular cell biology, BE Sumpio. RG Landes Co, Austin, Texas 1993; 1–119
  • Warnholtz A, Nickenig G, Schulz E, Macharzina R, Brasen JH, Skatchkov M, et al. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: Evidence for the involvement of the renin-angiotensin system. Circulation. 1999; 99: 2027–2033
  • Khan BV, Sola S, Lauten WB, Natarajan R, Hooper WC, Menon RG. Quinapril, an ACE inhibitor, reduces markers of oxidative stress in the metabolic sindrome. Diabetes Care. 2004; 27: 1712–1715
  • Lazaro A, Gallego-Delgado J, Justo P, Esteban V, Osende J, Mezzano S, et al. Long-term blood pressure control prevents oxidative renal injury. Antioxid Redox Signal. 2005; 7: 1285–1293
  • Landmesser U, Drexler H. Effect of angiotensin II type 1 receptor antagonism on endothelial function: Role of bradykinin and nitric oxide. Hypertens Suppl. 2006; 24: S39–S43
  • Major TC, Overhiser RW, Taylor DJ, Jr, Panek RL. Effects of quinapril, a new angiotensin-converting enzyme inhibitor, on vasocostrictor activity in the isolated perfused mesenteric vasculature of hypertensive rats. J Pharm Exp Ther. 1993; 265: 187–193
  • Haefeli WE, Linder L, Lüscher TF. Quinaprilat induces arterial vasodilation mediated by nitric oxide in humans. Hypertension. 1997; 30: 912–917
  • Uehata A, Takase B, Nishioka T, Isojima K, Satomura K, Ohsura F, et al. Effect of quinapril versus nitrendipine on endothelial dysfunction in patients with systemic hypertension. Am J Cardiol. 2001; 87: 1414–1416
  • Mancini GBJ, Henry GC, Macaya C, O'Neill BJ, Pupillo AL, Carere RG, et al. Angiotensin converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) study. Circulation. 1996; 94: 258–265
  • Griendling KK, Lassegue B, Alexander RW. Angiotensin receptors and their therapeutic implications. Annual Review of Pharmacology & Toxicology. 1996; 36: 281–306
  • Hornig B, Kohler C, Drexler H. Role of bradykinin in mediating vascular effects of ACE-inhibitors in humans. Circulation. 1997; 95: 1115–1118
  • Benzing T, Fleming I, Blaukat A, Muller-Esterl W, Busse R. Angiotensin converting enzyme inhibitor ramiprilat interferes with the sequestration of the B2 kinin receptor within the plasma membrane of native endothelial cells. Circulation. 1999; 99: 2034–2040
  • Gohlke P, Pees C, Unger T. AT2 receptor stimulation increases aortic cyclic GMP in SHRSP by a kinin-dependent mechanism. Hypertension. 1998; 31: 349–355
  • Tsutsumi Y, Matsubara H, Kurihara H, Murosawa S, Takai S, Miyazaki M. Angiotensin II type 2 overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest. 1999; 104: 925–935
  • Campbell DJ, Krum H, Esler MD. Losartan increases bradykinin levels in hypertensive humans. Circulation. 2005; 111: 315–320
  • Sadoshima J. Novel AT1 receptor-independent functions of losartan. Circ Res. 2002; 90: 754–756
  • Dickstein K, Timmermans P, Segal R. Losartan: A selective angiotensin II type 1 (AT1) receptor antagonist for the treatment of heart failure. Expert Opin Investig Drugs. 1998; 7: 1897–1914

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.