161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Role of chymase in blood pressure control, plasma and tissue angiotensin II, renal Haemodynamics, and excretion in spontaneously hypertensive rats

, , ORCID Icon, , , , & ORCID Icon show all
Pages 392-401 | Received 30 Jun 2020, Accepted 05 Feb 2021, Published online: 09 Mar 2021

References

  • Ghazi L, Drawz P Advances in understanding the Renin-Angiotensin-Aldosterone System (RAAS) in blood pressure control and recent pivotal trials of RAAS blockade in heart failure and diabetic nephropathy. F1000Research. 2017;6:1–10.
  • Ploth DW.Angiotensin-dependent renal mechanisms in two-kidney, one-clip renal vascular hypertension. Am J Physiol. 1983;245(2):F131–41. doi:10.1152/ajprenal.1983.245.2.F131.
  • Uehara Y, Miura S, Yahiro E, Saku K. Non-ACE pathway-induced angiotensin II production. Curr Pharm Des [Internet]. 2013;19(17):3054–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23176219
  • De Mello WC, Danser AH. Angiotensin II and the heart : on the intracrine renin-angiotensin system. Hypertension [Internet]. 2000;35(6):1183–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10720595%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/10856260
  • Vajapey R, Rini D, Walston J, Abadir P.The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance. Front Physiol. 2014;5(Nov):1–17.
  • Pernomian L, Pernomian L, Restini CB.Counter-regulatory effects played by the ACE - Ang II - AT1 and ACE2 - Ang-(1-7) - Mas axes on the reactive oxygen species-mediated control of vascular function: perspectives to pharmacological approaches in controlling vascular complications. VASA Eur J Vasc Med. 2014;41(6):404–14.
  • Ahmad S, Varagic J, Groban L, Dell’Italia LJ, Nagata S, Kon ND, Ferrario CM. Angiotensin-(1–12): a chymase-mediated cellular angiotensin II substrate. Vol. 16, Current Hypertension Reports. 2014.
  • Kirimura K, Takai S, Jin D, Muramatsu M, Kishi K, Yoshikawa K, Nakabayashi M, Mino Y, Miyazaki M. Role of chymase-dependent angiotensin II formation in regulating blood pressure in spontaneously hypertensive rats. Hypertens Res. 2005;28(5):457–64. doi:10.1291/hypres.28.457.
  • Roszkowska-Chojecka MM, Walkowska A, Gawrys O, Baranowska I, Kalisz M, Litwiniuk A, Martyńska L, Kompanowska-Jezierska E. Effects of chymostatin, a chymase inhibitor, on blood pressure, plasma and tissue angiotensin II, renal haemodynamics and renal excretion in two models of hypertension in the rat. Exp Physiol [Internet]. 2015;100(9):1093–105. doi:10.1113/EP085325
  • Froogh G, Pinto JT, Le Y, Kandhi S, Aleligne Y, Huang A, Sun D. Chymase-dependent production of angiotensin II: an old enzyme in old hearts. Am J Physiol - Hear Circ Physiol. 2017;312(2):H223–31. doi:10.1152/ajpheart.00534.2016.
  • McDonald JE, Padmanabhan N, Petrie MC, Hillier C, Connell JMC, McMurray JJV. Vasoconstrictor effect of the angiotensin-converting enzyme-resistant, chymase-specific substrate [Pro11D-Ala12] angiotensin I in human dorsal hand veins: in vivo demonstration of non-ACE production of angiotensin II in humans. Circulation [Internet]. 2001;104(15):1805–08. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L32963346
  • Paula CA, Sousa MV, Salgado MCO, Oliveira EB.Purification and substrate specificity of an angiotensin converting elastase-2 from the rat mesenteric arterial bed perfusate. Biochim Biophys Acta - Protein Struct Mol Enzymol. 1998;1388(1):227–38.doi:10.1016/S0167-4838(98)00186-1.
  • Santos CF, Caprio MAV, Oliveira EB, Salgado MCO, Schippers DN, Munzenmaier DH, Greene AS. Functional role, cellular source, and tissue distribution of rat elastase-2, an angiotensin II-forming enzyme. Am J Physiol Heart Circ Physiol. 2003;285(2):H775–83. doi:10.1152/ajpheart.00818.2002.
  • Takai S, Jin D, Muramatsu M, Miyazaki M Chymase as a novel target for the prevention of vascular diseases. Vol. 25, Trends in Pharmacological Sciences. 2004. p. 518–22.
  • Urata H. Pathological involvement of chymase-dependent angiotensin II formation in the development of cardiovascular disease. J Renin Angiotensin Aldosterone Syst [Internet]. 2000;1(2 Suppl):S35–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17199219
  • Nolin TD, Colaizzi IV, Palevsky PM, Matzke GR, Frye RF.Rapid microtiter plate assay for determination of inulin in human plasma and dialysate. J Pharm Biomed Anal. 2002;28(2):209–15.doi:10.1016/S0731-7085(01)00643-4.
  • Gawrys O, Baranowska I, Gawarecka K, Swiezewska E, Dyniewicz J, Olszynski KH, Masnyk M, Chmielewski M, Kompanowska-Jezierska E. Innovative lipid-based carriers containing cationic derivatives of polyisoprenoid alcohols augment the antihypertensive effectiveness of candesartan in spontaneously hypertensive rats. Hypertens Res. 2018;41(4):234–45. doi:10.1038/s41440-018-0011-y.
  • Bądzyńska B, Baranowska I, Gawrys O, Sadowski J.Evidence against a crucial role of renal medullary perfusion in blood pressure control of hypertensive rats. J Physiol. 2019;597(1):211–23. doi:10.1113/JP276342.
  • De Godoy MAF, Rattan S. Angiotensin-converting enzyme and angiotensin II receptor subtype 1 inhibitors restitute hypertensive internal anal sphincter in the spontaneously hypertensive rats. J Pharmacol Exp Ther [Internet]. 2006;318(2):725–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16648368
  • Chandrasekharan UM, Sanker S, Glynias MJ, Karnik SS, Husain A. Angiotensin II-forming activity in a reconstructed ancestral chymase. Science. 1996;271(5248):502–05. (80-). doi:10.1126/science.271.5248.502.
  • Pitts LH, Young AR, McCulloch J, MacKenzie E. Vasomotor effects of dimethyl sulfoxide on cat cerebral arteries in vitro and in vivo. Stroke [Internet]. 1986;17(3):483–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3715947
  • Kassell N, Sprowell J, Boarini D, Olin J.Effect of dimethyl sulfoxide on the cerebral and systemic circulations of the dog. Neurosurgery. 1983;12(1):24–28. doi:10.1227/00006123-198301000-00005.
  • Crawford C, Wildman SSP, Kelly MC, Kennedy-Lydon TM, Peppiatt-Wildman CM. Sympathetic nerve-derived ATP regulates renal medullary vasa recta diameter via pericyte cells: a role for regulating medullary blood flow?. Front Physiol. 2013;4:307. doi:10.3389/fphys.2013.00307.
  • Kim J, Pannabecker TL.Two-compartment model of inner medullary vasculature supports dual modes of vasopressin-regulated inner medullary blood flow. Am J Physiol - Ren Physiol. 2010;299(1):F273–F279. doi:10.1152/ajprenal.00072.2010.
  • Evans KK, Nawata CM, Pannabecker TL.Isolation and perfusion of rat inner medullary vasa recta. Am J Physiol - Ren Physiol. 2015;309(4):F300–4. doi:10.1152/ajprenal.00214.2015.
  • Becari C, Teixeira FR, Oliveira EB, Salgado MCO.Angiotensin-converting enzyme inhibition augments the expression of rat elastase-2, an angiotensin II-forming enzyme. Am J Physiol Heart Circ Physiol. 2011;301(2):H565–70. doi:10.1152/ajpheart.00534.2010.
  • Wintroub BU, Schechter NB, Lazarus GS, Kaempfer CE, Schwartz LB.Angiotensin I conversion by human and rat chymotryptic proteinases. J Invest Dermatol. 1984;83(5):336–39. doi:10.1111/1523-1747.ep12264144.
  • Le Trong H, Neurath H, Woodbury RG. Substrate specificity of the chymotrypsin-like protease in secretory granules isolated from rat mast cells. Proc Natl Acad Sci [Internet]. 1987;84(2):364–67. Available from: http://www.pnas.org/content/84/2/364.short
  • Shiota N, Rysä J, Kovanen PT, Ruskoaho H, Kokkonen JO, Lindstedt KA. A role for cardiac mast cells in the pathogenesis of hypertensive heart disease. J Hypertens [Internet]. 2003;21(10):1935–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14508201
  • Kokkonen JO, Lindstedt KA, Kovanen PT.Role for chymase in heart failure: angiotensin II-dependent or -independent mechanisms? Circulation. 2003;107(20):2522–24. doi:10.1161/01.CIR.0000074786.92067.AA.
  • Chrysohoou C, Pitsavos C, Barbetseas J, Kotroyiannis I, Brili S, Vasiliadou K, Papadimitriou L, Stefanadis C. Chronic systemic inflammation accompanies impaired ventricular diastolic function, detected by Doppler imaging, in patients with newly diagnosed systolic heart failure (hellenic heart failure study). Heart Vessels [Internet]. 2009;24(1):22–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19165564
  • Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, Dell’Italia L. An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci. 2014;126(7):461–69. doi:10.1042/CS20130400.
  • Wang T, Han S-X, Zhang S-F, Ning -Y-Y, Chen L, Chen Y-J, He G-M, Xu D, An J, Yang T, et al. Role of chymase in cigarette smoke-induced pulmonary artery remodeling and pulmonary hypertension in hamsters. Respir Res [Internet]. 2010;11(1):36. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2853423&tool=pmcentrez&rendertype=abstract
  • Davis GK, Roberts DH.Molecular genetics of the renin-angiotensin system: implications for angiotensin II receptor blockade. Pharmacol Ther. 1997;75(1):43–50. doi:10.1016/S0163-7258(97)00021-1.
  • Ahmad S, Wei CC, Tallaj J, Dell’Italia LJ, Moniwa N, Varagic J, Ferrario CM. Chymase mediates angiotensin-(1-12) metabolism in normal human hearts. J Am Soc Hypertens. 2013;7(2):128–36. doi:10.1016/j.jash.2012.12.003.
  • Ahmad S, Varagic J, VonCannon JL, Groban L, Collawn JF, Dell’Italia LJ, Ferrario CM. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme. Biochem Biophys Res Commun. 2016;478(2):559–64. doi:10.1016/j.bbrc.2016.07.100.
  • Doggrell SA, Wanstall JC Vascular chymase: pathophysiological role and therapeutic potential of inhibition. Vol. 61, Cardiovascular Research. 2004. p. 653–62.
  • Lorenz JN.Chymase: the other ACE? Am J Physiol Ren Physiol. 2010;298(1):F35–F36. doi:10.1152/ajprenal.00641.2009.
  • Petrie MC, Padmanabhan N, McDonald JE, Hillier C, Connell JMC, McMurray JJV. Angiotensin converting enzyme (ACE) and non-ACE dependent angiotensin II generation in resistance arteries from patients with heart failure and coronary heart disease. J Am Coll Cardiol [Internet]. 2001;37(4):1056–61. doi:10.1016/S0735-1097(01)01111-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.