221
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Autophagy contributes to angiotensin II induced dysfunction of HUVECs

, , , , , , & show all
Pages 462-473 | Received 17 Jan 2021, Accepted 04 Mar 2021, Published online: 29 Mar 2021

References

  • Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): the ubiquitous system for homeostasis and pathologies. Biomed Pharmacother. 2017;94:317–25.
  • Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res. 2017;125(Pt A):21-38
  • Leung PS.The peptide hormone angiotensin II: its new functions in tissues and organs. Curr Protein Pept Sci. 2004;5(4):267–73. doi:10.2174/1389203043379693.
  • Kim S, Iwao H.Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev. 2000;52(1):11–34.
  • Ferrario CM, Mullick AE. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res. 2017;125(Pt A):57-71.
  • Kimura S, Zhang G-X, Nishiyama A, Shokoji T, Yao L, Fan -Y-Y, Rahman M, Abe Y. Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension. 2005;45(3):438–44. doi:10.1161/01.HYP.0000157169.27818.ae.
  • Zhang GX, Lu X, Kimura S, Nishiyama A. Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation. Cardiovasc Res. 2007;76(2):204–12. doi:10.1016/j.cardiores.2007.07.014.
  • Lijnen PJ, Piccart Y, Coenen T, Prihadi JS. Angiotensin II-induced mitochondrial reactive oxygen species and peroxiredoxin-3 expression in cardiac fibroblasts. J Hypertens. 2012;30(10):1986–91. doi:10.1097/HJH.0b013e32835726c1.
  • Tsai IC, Pan Z-C, Cheng H-P, Liu C-H, Lin B-T, Jiang MJ. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence. J Mol Cell Cardiol. 2016;98:18–27.
  • Dikalov SI, Nazarewicz RR.Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal. 2013;19(10):1085–94. doi:10.1089/ars.2012.4604.
  • Wang Y, Zhu Y, Zhu Y, Lu Z, Xu F. Regulation of the angiotensin II-p22phox-reactive oxygen species signaling pathway, apoptosis and 8-oxoguanine-DNA glycosylase 1 retrieval in hyperoxia-induced lung injury and fibrosis in rats. Exp Ther Med. 2017;13(6):3397–407. doi:10.3892/etm.2017.4429.
  • Bian F, Cui J, Zheng T, Jin S. Reactive oxygen species mediate angiotensin II-induced transcytosis of low-density lipoprotein across endothelial cells. Int J Mol Med. 2017;39(3):629–35. doi:10.3892/ijmm.2017.2887.
  • Tang EH, Vanhoutte PM.Endothelial dysfunction: a strategic target in the treatment of hypertension? Pflugers Arch. 2010;459(6):995–1004. doi:10.1007/s00424-010-0786-4.
  • Holtz J, Goetz RM.Vascular renin-angiotensin-system, endothelial function and atherosclerosis? Basic Res Cardiol. 1994;89(Suppl 1):71–86. doi:10.1007/978-3-642-85660-0_7.
  • Watanabe T, Barker TA, Berk BC.Angiotensin II and the endothelium: diverse signals and effects. Hypertension. 2005;45(2):163–69. doi:10.1161/01.HYP.0000153321.13792.b9.
  • Becher UM, Endtmann C, Tiyerili V, Nickenig G, Werner N. Endothelial damage and regeneration: the role of the renin-angiotensin-aldosterone system. Curr Hypertens Rep. 2011;13(1):86–92. doi:10.1007/s11906-010-0171-x.
  • Parzych KR, Klionsky DJ.An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–73. doi:10.1089/ars.2013.5371.
  • Kim KH, Lee MS.Autophagy–a key player in cellular and body metabolism. Nat Rev Endocrinol. 2014;10(6):322–37. doi:10.1038/nrendo.2014.35.
  • Klionsky DJ, Emr SD.Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717–21. doi:10.1126/science.290.5497.1717.
  • Ravikumar B, Rubinsztein DC.Role of autophagy in the clearance of mutant huntingtin: a step towards therapy? Mol Aspects Med. 2006;27(5–6):520–27. doi:10.1016/j.mam.2006.08.008.
  • Codogno P, Meijer AJ.Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 2005;12(Suppl 2):1509–18. doi:10.1038/sj.cdd.4401751.
  • Denton D, Xu T, Kumar S.Autophagy as a pro-death pathway. Immunol Cell Biol. 2015;93(1):35–42. doi:10.1038/icb.2014.85.
  • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. Embo J. 2007;26(7):1749–60. doi:10.1038/sj.emboj.7601623.
  • Doria A, Gatto M, Punzi L.Autophagy in human health and disease. N Engl J Med. 2013;368(19):1845.
  • Yu KY, Wang Y-P, Wang L-H, Jian Y, Zhao X-D, Chen J-W, Murao K, Zhu W, Dong L, Wang G-Q, et al. Mitochondrial KATP channel involvement in angiotensin II-induced autophagy in vascular smooth muscle cells. Basic Res Cardiol. 2014;109(4):416. doi:10.1007/s00395-014-0416-y.
  • Shan H, Guo D, Li X, Zhao X, Li W, Bai X. From autophagy to senescence and apoptosis in Angiotensin II-treated vascular endothelial cells. APMIS. 2014;122(10):985–92. doi:10.1111/apm.12242.
  • Yao L, He J, Li B, Yan M, Wang H, Tan L, Liu M, Lv X, Lv H, Zhang X, et al. Regulation of YAP by mammalian target of rapamycin complex 1 in endothelial cells controls blood pressure through COX-2/mPGES-1/PGE2 cascade. Hypertension. 2019;74(4):936–46. doi:10.1161/HYPERTENSIONAHA.119.12834.
  • Guo J, Wang Z, Wu J, Liu M, Li M, Sun Y, Huang W, Li Y, Zhang Y, Tang W, et al. Endothelial SIRT6 is vital to prevent hypertension and associated cardiorenal injury through targeting Nkx3.2-GATA5 signaling. Circ Res. 2019;124(10):1448–61. doi:10.1161/CIRCRESAHA.118.314032.
  • Gao J, Wei T, Huang C, Sun M, Shen W. Sirtuin 3 governs autophagy-dependent glycolysis during Angiotensin II-induced endothelial-to-mesenchymal transition. Faseb J. 2020;34(12):16645–61. doi:10.1096/fj.202001494R.
  • Chan SH, Chan JY.Angiotensin-generated reactive oxygen species in brain and pathogenesis of cardiovascular diseases. Antioxid Redox Signal. 2013;19(10):1074–84. doi:10.1089/ars.2012.4585.
  • Nguyen Dinh Cat A, Touyz RM.Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep. 2011;13(2):122–28. doi:10.1007/s11906-011-0187-x.
  • Hanna IR, Taniyama Y, Szöcs K, Rocic P, Griendling KK. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antioxid Redox Signal. 2002;4(6):899–914. doi:10.1089/152308602762197443.
  • Kimura S, Zhang G-X, Nishiyama A, Shokoji T, Yao L, Fan -Y-Y, Rahman M, Suzuki T, Maeta H, Abe Y, et al. Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension. 2005;45(5):860–66. doi:10.1161/01.HYP.0000163462.98381.7f.
  • Li L, Tan J, Miao Y, Lei P, Zhang Q. ROS and Autophagy: interactions and molecular regulatory mechanisms. Cell Mol Neurobiol. 2015;35(5):615–21. doi:10.1007/s10571-015-0166-x.
  • Godo S, Shimokawa H. Endothelial Functions. Arterioscler Thromb Vasc Biol. 2017;37(9): e108-e114. DOI: 10.1161/ATVBAHA.117.309813
  • Kanaan GN, Harper ME.Cellular redox dysfunction in the development of cardiovascular diseases. Biochim Biophys Acta. 2017;1861(11):2822–29. doi:10.1016/j.bbagen.2017.07.027.
  • Li J, Geng XY, Cong XL. PGC-1alpha ameliorates AngiotensinII-induced eNOS dysfunction in human aortic endothelial cells. Vascul Pharmacol. 2016;83:90–97. doi:10.1016/j.vph.2016.05.005.
  • Sheldon RD, Meers GM, Morris EM, Linden MA, Cunningham RP, Ibdah JA, Thyfault JP, Laughlin MH, Rector RS. eNOS deletion impairs mitochondrial quality control and exacerbates Western diet-induced NASH. Am J Physiol Endocrinol Metab. 2019;317(4):E605–E616. E605-E616. doi:10.1152/ajpendo.00096.2019.
  • Shao J, Miao C, Geng Z, Gu M, Wu Y, Li Q. Effect of eNOS on ischemic postconditioning-induced autophagy against ischemia/reperfusion injury in mice. Biomed Res Int. 2019;2019:5201014.
  • Benavides GA, Liang Q, Dodson M, Darley-Usmar V, Zhang J. Inhibition of autophagy and glycolysis by nitric oxide during hypoxia-reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons. Free Radic Biol Med. 2013;65:1215–28.
  • Jin L, Gao H, Wang J, Yang S, Wang J, Liu J, Yang Y, Yan T, Chen T, Zhao Y, et al. Role and regulation of autophagy and apoptosis by nitric oxide in hepatic stellate cells during acute liver failure. Liver Int. 2017;37(11):1651–59. doi:10.1111/liv.13476.
  • Guo F, Li X, Peng J, Tang Y, Yang Q, Liu L, Wang Z, Jiang Z, Xiao M, Ni C, et al. Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shear stress in an ex vivo perfused system. Ann Biomed Eng. 2014;42(9):1978–88. doi:10.1007/s10439-014-1033-5.
  • Chen J, Wang L, Liu WH, Shi J, Zhong Y, Liu SJ, Liu SM. Aspirin protects human coronary artery endothelial cells by inducing autophagy. Physiol Int. 2020;107(2):294–305. doi:10.1556/2060.2020.00029.
  • Wang K, Peng S, Xiong S, Niu A, Xia M, Xiong X, Zeng G, Huang Q. Naringin inhibits autophagy mediated by PI3K-Akt-mTOR pathway to ameliorate endothelial cell dysfunction induced by high glucose/high fat stress. Eur J Pharmacol. 2020;874:173003.
  • Lamark T, Johansen T. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol. 2012;2012:736905. doi:10.1155/2012/736905.
  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131–35. doi:10.1038/nature07976.
  • Kirshenbaum LA.Regulation of autophagy in the heart in health and disease. J Cardiovasc Pharmacol. 2012;60(2):109. doi:10.1097/FJC.0b013e31825f6faa.
  • Verheye S, Martinet W, Kockx MM, Knaapen MWM, Salu K, Timmermans J-P, Ellis JT, Kilpatrick DL, De Meyer GRY. Selective clearance of macrophages in atherosclerotic plaques by autophagy. J Am Coll Cardiol. 2007;49(6):706–15. doi:10.1016/j.jacc.2006.09.047.
  • Liao X, Sluimer J, Wang Y, Subramanian M, Brown K, Pattison J, Robbins J, Martinez J, Tabas I. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 2012;15(4):545–53. doi:10.1016/j.cmet.2012.01.022.
  • He H, Feng Y-S, Zang L-H, Liu -W-W, Ding L-Q, Chen L-X, Kang N, Hayashi T, Tashiro S-I, Onodera S, et al. Nitric oxide induces apoptosis and autophagy; autophagy down-regulates NO synthesis in physalin A-treated A375-S2 human melanoma cells. Food Chem Toxicol. 2014;71:128–35.
  • Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HHHW, Busse R, Schröder K, Brandes RP. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension. 2008;51(2):211–17. doi:10.1161/HYPERTENSIONAHA.107.100214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.